Structure Solution of the Fluorescent Protein Cerulean Using MeshAndCollect.

X-ray crystallography is the major technique used to obtain high resolution information concerning the 3-dimensional structures of biological macromolecules. Until recently, a major requirement has been the availability of relatively large, well diffracting crystals, which are often challenging to obtain. However, the advent of serial crystallography and a renaissance in multi-crystal data collection methods has meant that the availability of large crystals need no longer be a limiting factor. Here, we illustrate the use of the automated MeshAndCollect protocol, which first identifies the positions of many small crystals mounted on the same sample holder and then directs the collection from the crystals of a series of partial diffraction data sets for subsequent merging and use in structure determination. MeshAndCollect can be applied to any type of micro-crystals, even if weakly diffracting. As an example, we present here the use of the technique to solve the crystal structure of the Cyan Fluorescent Protein (CFP) Cerulean.

[1]  L. Mazzei,et al.  Merging of synchrotron serial crystallographic data by a genetic algorithm , 2016, Acta crystallographica. Section D, Structural biology.

[2]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[3]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Olof Svensson,et al.  ISPyB: an information management system for synchrotron macromolecular crystallography , 2011, Bioinform..

[5]  Aaron S. Brewster,et al.  Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams , 2015, Acta crystallographica. Section D, Biological crystallography.

[6]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[7]  A. N. Popov,et al.  MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines , 2015, Acta crystallographica. Section D, Biological crystallography.

[8]  S. Iwata,et al.  Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[9]  R. Heim,et al.  Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. , 1999, Methods in cell biology.

[10]  Didier Nurizzo,et al.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments , 2010, Journal of synchrotron radiation.

[11]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[13]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[14]  Ilme Schlichting,et al.  Serial femtosecond crystallography: the first five years , 2015, IUCrJ.

[15]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[16]  M. Noirclerc-Savoye,et al.  Chromophore Isomer Stabilization Is Critical to the Efficient Fluorescence of Cyan Fluorescent Proteins. , 2017, Biochemistry.

[17]  Henry N. Chapman,et al.  Femtosecond X-ray protein nanocrystallography , 2010 .

[18]  R. Ravelli,et al.  The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments , 2013, Acta crystallographica. Section D, Biological crystallography.

[19]  Anton Barty,et al.  Room-temperature macromolecular serial crystallography using synchrotron radiation , 2014, IUCrJ.

[20]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[21]  Hojjat Adeli,et al.  The First Five Years , 1998, Integr. Comput. Aided Eng..

[22]  Antoine Royant,et al.  Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield. , 2009, Biochemistry.

[23]  Alexander Popov,et al.  Hierarchical clustering for multiple-crystal macromolecular crystallography experiments: the ccCluster program , 2017, Journal of applied crystallography.

[24]  Olof Svensson,et al.  Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF , 2013, Journal of applied crystallography.

[25]  O. Woolpert Biological Sciences , 1980, Nature.

[26]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[27]  Meitian Wang,et al.  Serial Synchrotron X-Ray Crystallography (SSX). , 2017, Methods in molecular biology.

[28]  P. Andrew Karplus,et al.  Improved R-factors for diffraction data analysis in macromolecular crystallography , 1997, Nature Structural Biology.

[29]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[30]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[31]  Henry N. Chapman,et al.  Serial crystallography on in vivo grown microcrystals using synchrotron radiation , 2014, IUCrJ.

[32]  Scotland , 1914, The Hospital.

[33]  Olof Svensson,et al.  The use of workflows in the design and implementation of complex experiments in macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[34]  玉一 芦田,et al.  Acta Crystallographica Section D (Biological Crystallography) の発刊に際して , 1993 .

[35]  E. Round,et al.  X-ray-radiation-induced changes in bacteriorhodopsin structure. , 2011, Journal of molecular biology.