Further results on optimal (v, 4, 2, 1)-OOCs
暂无分享,去创建一个
[1] C. Tuckett. The Existence of Q , 1994 .
[2] Koji Momihara. On cyclic 2(k-1)-support (n, k)k-1 difference families , 2009, Finite Fields Their Appl..
[3] Keith E. Mellinger,et al. Families of optimal OOCs with λ = 2 , 2008 .
[4] Yanxun Chang,et al. Further results on optimal optical orthogonal codes with weight 4 , 2004, Discret. Math..
[5] Jawad A. Salehi,et al. Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..
[6] Yanxun Chang. Some cyclic BIBDs with block size four , 2004 .
[7] Yanxun Chang,et al. Constructions of optimal optical orthogonal codes with weight five , 2005 .
[8] M. Buratti. Recursive constructions for difference matrices and relative difference families , 1998 .
[9] Koji Momihara,et al. Strong difference families, difference covers, and their applications for relative difference families , 2009, Des. Codes Cryptogr..
[10] Anita Pasotti,et al. Combinatorial designs and the theorem of Weil on multiplicative character sums , 2009, Finite Fields Their Appl..
[11] Tao Feng,et al. Constructions for strictly cyclic 3-designs and applications to optimal OOCs with lambda=2 , 2008, J. Comb. Theory, Ser. A.
[12] R. C. Bose. ON THE CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS , 1939 .
[13] Tsonka Baicheva,et al. Optimal (v, 4, 2, 1) optical orthogonal codes with small parameters , 2010, ArXiv.
[14] C. Colbourn,et al. CORR 99-01 Applications of Combinatorial Designs to Communications , Cryptography , and Networking , 1999 .
[15] R. Julian R. Abel,et al. Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.
[16] Keith E. Mellinger,et al. Families of Optimal OOCs With $\lambda = 2$ , 2008, IEEE Transactions on Information Theory.
[17] O. Moreno,et al. Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .
[18] L. Zhu,et al. Existence of (q,6,1) Difference Families withq a Prime Power , 1998, Des. Codes Cryptogr..
[19] Hung-Lin Fu,et al. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..
[20] Optical orthogonal codes: Design, . . . , 1989 .
[21] Yanxun Chang,et al. Optimal (4up, 5, 1) optical orthogonal codes , 2004 .
[22] Hanfried Lenz,et al. Design theory , 1985 .
[23] Fan Chung Graham,et al. Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.
[24] Yanxun Chang,et al. Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.
[25] Anita Pasotti,et al. New results on optimal (v, 4, 2, 1) optical orthogonal codes , 2011, Des. Codes Cryptogr..
[26] Selmer M. Johnson. A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.
[27] Koji Momihara,et al. Bounds and Constructions of Optimal ($n, 4, 2, 1$) Optical Orthogonal Codes , 2009, IEEE Transactions on Information Theory.
[28] Marco Buratti,et al. Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..
[29] Charles J. Colbourn,et al. Recursive constructions for optimal (n,4,2)-OOCs , 2004 .
[30] Guu-chang Yang,et al. Optical orthogonal codes with unequal auto- and cross-correlation constraints , 1995, IEEE Trans. Inf. Theory.
[31] Clement W. H. Lam,et al. Difference Families , 2001, Des. Codes Cryptogr..
[32] Richard M. Wilson,et al. Cyclotomy and difference families in elementary abelian groups , 1972 .
[33] ChungF. R.K.,et al. Optical orthogonal codes , 2006 .
[34] K. Chen,et al. Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .
[35] S. Lang. Number Theory III , 1991 .
[36] Yanxun Chang,et al. Constructions for optimal optical orthogonal codes , 2003, Discret. Math..
[37] Anita Pasotti,et al. Further progress on difference families with block size 4 or 5 , 2010, Des. Codes Cryptogr..
[38] Keith E. Mellinger,et al. Geometric constructions of optimal optical orthogonal codes , 2008, Adv. Math. Commun..
[39] Douglas R Stinson,et al. Surveys in Combinatorics, 1999: Applications of Combinatorial Designs to Communications, Cryptography, and Networking , 1999 .
[40] Anita Pasotti,et al. Graph decompositions with the use of difference matrices , 2006 .