Further results on optimal (v, 4, 2, 1)-OOCs

Let @F(v,k,@l"a,@l"c) denote the maximum possible size among all (v,k,@l"a,@l"c)-OOCs. A (v,k,@l"a,@l"c)-OOC is said to be optimal if its size is equal to @F(v,k,@l"a,@l"c). In this paper, the constructions and the sizes of optimal (v,4,2,1)-OOCs are investigated. An upper bound for @F(v,4,2,1) is improved. The exact value of @F(v,4,2,1) with v@?201 is given with the aid of computer search. An optimal (24hv,4,2,1)-OOC with h@?{1,2} and v=p"1p"2...p"r, where prime p"i=1(mod6) is constructed recursively. The existence of g-regular (gp,4,2,1)-OOCs for g=3,6,9,16, and p a prime satisfying a suitable congruence is established by direct constructions. Furthermore, the sizes of several new infinite classes of optimal (v,4,2,1)-OOCs are obtained. In particular, @F(v,4,2,1)=U(v) for positive integer v=80,400(mod480).

[1]  C. Tuckett The Existence of Q , 1994 .

[2]  Koji Momihara On cyclic 2(k-1)-support (n, k)k-1 difference families , 2009, Finite Fields Their Appl..

[3]  Keith E. Mellinger,et al.  Families of optimal OOCs with λ = 2 , 2008 .

[4]  Yanxun Chang,et al.  Further results on optimal optical orthogonal codes with weight 4 , 2004, Discret. Math..

[5]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[6]  Yanxun Chang Some cyclic BIBDs with block size four , 2004 .

[7]  Yanxun Chang,et al.  Constructions of optimal optical orthogonal codes with weight five , 2005 .

[8]  M. Buratti Recursive constructions for difference matrices and relative difference families , 1998 .

[9]  Koji Momihara,et al.  Strong difference families, difference covers, and their applications for relative difference families , 2009, Des. Codes Cryptogr..

[10]  Anita Pasotti,et al.  Combinatorial designs and the theorem of Weil on multiplicative character sums , 2009, Finite Fields Their Appl..

[11]  Tao Feng,et al.  Constructions for strictly cyclic 3-designs and applications to optimal OOCs with lambda=2 , 2008, J. Comb. Theory, Ser. A.

[12]  R. C. Bose ON THE CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS , 1939 .

[13]  Tsonka Baicheva,et al.  Optimal (v, 4, 2, 1) optical orthogonal codes with small parameters , 2010, ArXiv.

[14]  C. Colbourn,et al.  CORR 99-01 Applications of Combinatorial Designs to Communications , Cryptography , and Networking , 1999 .

[15]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[16]  Keith E. Mellinger,et al.  Families of Optimal OOCs With $\lambda = 2$ , 2008, IEEE Transactions on Information Theory.

[17]  O. Moreno,et al.  Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .

[18]  L. Zhu,et al.  Existence of (q,6,1) Difference Families withq a Prime Power , 1998, Des. Codes Cryptogr..

[19]  Hung-Lin Fu,et al.  Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..

[20]  Optical orthogonal codes: Design, . . . , 1989 .

[21]  Yanxun Chang,et al.  Optimal (4up, 5, 1) optical orthogonal codes , 2004 .

[22]  Hanfried Lenz,et al.  Design theory , 1985 .

[23]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[24]  Yanxun Chang,et al.  Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.

[25]  Anita Pasotti,et al.  New results on optimal (v, 4, 2, 1) optical orthogonal codes , 2011, Des. Codes Cryptogr..

[26]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[27]  Koji Momihara,et al.  Bounds and Constructions of Optimal ($n, 4, 2, 1$) Optical Orthogonal Codes , 2009, IEEE Transactions on Information Theory.

[28]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[29]  Charles J. Colbourn,et al.  Recursive constructions for optimal (n,4,2)-OOCs , 2004 .

[30]  Guu-chang Yang,et al.  Optical orthogonal codes with unequal auto- and cross-correlation constraints , 1995, IEEE Trans. Inf. Theory.

[31]  Clement W. H. Lam,et al.  Difference Families , 2001, Des. Codes Cryptogr..

[32]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[33]  ChungF. R.K.,et al.  Optical orthogonal codes , 2006 .

[34]  K. Chen,et al.  Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .

[35]  S. Lang Number Theory III , 1991 .

[36]  Yanxun Chang,et al.  Constructions for optimal optical orthogonal codes , 2003, Discret. Math..

[37]  Anita Pasotti,et al.  Further progress on difference families with block size 4 or 5 , 2010, Des. Codes Cryptogr..

[38]  Keith E. Mellinger,et al.  Geometric constructions of optimal optical orthogonal codes , 2008, Adv. Math. Commun..

[39]  Douglas R Stinson,et al.  Surveys in Combinatorics, 1999: Applications of Combinatorial Designs to Communications, Cryptography, and Networking , 1999 .

[40]  Anita Pasotti,et al.  Graph decompositions with the use of difference matrices , 2006 .