Mesoporous poly(vinylidene fluoride-co-trifluoroethylene) membranes for lithium-ion battery separators

The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2013, UID/EEA/04436/2013 and UID/QUI/0686/2016; and projects no. POCI-01-0145-FEDER-028157, PTDC/FIS-MAC/28157/2017 and POCI-01-0145-FEDER-028237. The authors also thank the FCT for financial support under grant SFRH/BPD/112547/2015 (C.M.C.). J.N.P. wish to thank the financial support of the project Centro-01-0145-FEDER-000017 - EMaDeS - Energy, Materials and Sustainable Development, co-financed by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the European Union through the European Regional Development Fund (ERDF). Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project MAT2016-76039-C4-3-R (AEI/FEDER, UE) (including FEDER financial support) and from the Basque Government Industry Department under the ELKARTEK and HAZITEK Program is also acknowledged.

[1]  Stephen A. Hackney,et al.  High Energy Density Lithium Batteries: Materials, Engineering, Applications , 2010 .

[2]  Baohua Li,et al.  Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon , 2013 .

[3]  Senentxu Lanceros-Méndez,et al.  Modeling separator membranes physical characteristics for optimized lithium ion battery performance , 2015 .

[4]  Senentxu Lanceros-Méndez,et al.  Porous Membranes of Montmorillonite/Poly(vinylidene fluoride-trifluorethylene) for Li-Ion Battery Separators , 2012 .

[5]  S. Lanceros‐Méndez,et al.  Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications , 2013 .

[6]  S. Lanceros‐Méndez,et al.  Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion , 2015 .

[7]  J. Mano,et al.  FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED β-PVDF FILMS , 2001 .

[8]  Boucar Diouf,et al.  Potential of lithium-ion batteries in renewable energy , 2015 .

[9]  Hongfeng Zhang,et al.  Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers , 2015, Heliyon.

[10]  F. Alloin,et al.  Plasticized microporous poly(vinylidene fluoride) separators for lithium‐ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes , 2004 .

[11]  S. Lanceros‐Méndez,et al.  Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications , 2012 .

[12]  Bing Sun,et al.  Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety , 2014, Scientific Reports.

[13]  K. Miyatake,et al.  Preparation of the electrode for high temperature PEFCs using novel polymer electrolytes based on organic/inorganic nanohybrids , 2004 .

[14]  Xiangming He,et al.  Preparation and performance of silica/polypropylene composite separator for lithium-ion batteries , 2014, Journal of Materials Science.

[15]  Cecilio Blanco,et al.  Evaluation of $\hbox{LiFePO}_{4}$ Batteries for Electric Vehicle Applications , 2013, IEEE Transactions on Industry Applications.

[16]  Dominic A. Notter,et al.  Contribution of Li-ion batteries to the environmental impact of electric vehicles. , 2010, Environmental science & technology.

[17]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[18]  Zhimin Li,et al.  High ionic conductive PVDF-based fibrous electrolytes , 2008 .

[19]  B. Scrosati,et al.  Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application , 2010 .

[20]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[21]  Xiaofang Yang,et al.  Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect , 1994 .

[22]  S. Lanceros‐Méndez,et al.  Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators , 2018, Journal of Membrane Science.

[23]  Christian Fleischer,et al.  Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles , 2014 .

[24]  Y. W. Kim,et al.  Lithium ion conduction in PEO–salt electrolytes gelled with PAN , 1998 .

[25]  Alejandro Várez,et al.  Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries , 2016 .

[26]  Jenn‐Shing Chen,et al.  Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors , 2009 .

[27]  中嶌 剛,et al.  Fluorinated materials for energy conversion , 2005 .

[28]  Md. Mokhlesur Rahman,et al.  Microporous gel polymer electrolytes for lithium rechargeable battery application , 2012 .

[29]  S. Choi,et al.  Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries , 2004 .

[30]  O. E. Fayemi,et al.  Zinc Oxide Nanocomposites of Selected Polymers: Synthesis, Characterization, and Corrosion Inhibition Studies on Mild Steel in HCl Solution , 2017, ACS omega.

[31]  S. Lanceros‐Méndez,et al.  Composition-dependent physical properties of poly[(vinylidene fluoride)-co-trifluoroethylene]–poly(ethylene oxide) blends , 2013, Journal of Materials Science.

[32]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[33]  Yusong Zhu,et al.  A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries , 2014 .

[34]  J. Mano,et al.  Characterization of poled and non-poled β-PVDF films using thermal analysis techniques , 2004 .

[35]  J. G. Rocha,et al.  Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators , 2012 .

[36]  J. G. Rocha,et al.  Stability of the electroactive response of β-poly(vinylidene fluoride) for applications in the petrochemical industry , 2010 .

[37]  S. Lanceros‐Méndez,et al.  Electroactive poly(vinylidene fluoride)-based structures for advanced applications , 2018, Nature Protocols.

[38]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[39]  Peiqing Wang,et al.  Crystalline morphologies of P(VDF-TrFE) (70/30) copolymer films above melting point , 2008 .

[40]  Karim Zaghib,et al.  Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries , 2011 .

[41]  Jiangyu Li Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. , 2003, Physical review letters.

[42]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[43]  Rui A. Sousa,et al.  High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries , 2016 .

[44]  M. Alcoutlabi,et al.  Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries , 2014, Journal of Solid State Electrochemistry.

[45]  S. Bose,et al.  Recent Advances in Preparation of Porous Polymeric Membranes by Unique Techniques and Mitigation of Fouling through Surface Modification , 2018 .

[46]  Min Yang,et al.  Membranes in Lithium Ion Batteries , 2012, Membranes.

[47]  Sébastien Martinet,et al.  Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity , 2009 .

[48]  S. Lanceros‐Méndez,et al.  Microporous membranes of NaY zeolite/poly(vinylidene fluoride-trifluoroethylene) for Li-ion battery separators , 2013 .

[49]  S. Lanceros‐Méndez,et al.  Li-ion battery separator membranes based on barium titanate and poly(vinylidene fluoride-co-trifluoroethylene) : filler size and concentration effects , 2014 .

[50]  M. Armand,et al.  Electrochemical study of linear and crosslinked POE-based polymer electrolytes , 1992 .

[51]  S. Lanceros‐Méndez,et al.  Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance , 2016 .

[52]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[53]  S. Lanceros‐Méndez,et al.  Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications , 2012 .

[54]  Dong Ju Lee,et al.  A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte , 2011 .

[55]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[56]  S. Lanceros‐Méndez,et al.  Preparation of poly(vinylidene fluoride) lithium-ion battery separators and their compatibilization with ionic liquid - a green solvent approach , 2017 .

[57]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[58]  V. Varshney,et al.  Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride , 2016, Scientific Reports.

[59]  M. Watanabe,et al.  Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer , 2000 .

[60]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[61]  Xinran Xiao,et al.  Thermal expansion/shrinkage measurement of battery separators using a dynamic mechanical analyzer , 2018, Polymer Testing.

[62]  N. Angulakshmi,et al.  Electrospun Trilayer Polymeric Membranes as Separator for Lithium–ion Batteries , 2014 .

[63]  S. Lanceros‐Méndez,et al.  Li-ion battery separator membranes based on poly(vinylidene fluoride-trifluoroethylene)/carbon nanotube composites , 2013 .

[64]  Y. Chung,et al.  Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance , 2009 .

[65]  Sergiy Kalnaus,et al.  Mechanical behavior and failure mechanisms of Li-ion battery separators , 2017 .

[66]  W. Goedel,et al.  A Simple and Effective Method for the Preparation of Porous Membranes with Three‐Dimensionally Arranged Pores , 2004 .

[67]  B. Scrosati,et al.  Influence of the porosity degree of poly(vinylidene fluoride-co- hexafluoropropylene) separators in the performance of Li-ion batteries , 2014 .

[68]  Yongku Kang,et al.  Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries , 2001 .

[69]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[70]  Liquan Chen,et al.  Lithium ion conduction in polymer electrolytes based on PAN , 1996 .

[71]  D. Aurbach,et al.  Multifunctional Manganese Ions Trapping and Hydrofluoric Acid Scavenging Separator for Lithium Ion Batteries Based on Poly(ethylene‐alternate‐maleic acid) Dilithium Salt , 2017 .

[72]  S. Lanceros‐Méndez,et al.  On the relevance of the polar β-phase of poly(vinylidene fluoride) for high performance lithium-Ion battery separators , 2017 .

[73]  Zhi‐Kang Xu,et al.  Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries , 2016, Chinese Journal of Polymer Science.

[74]  B. Cheng,et al.  A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery , 2016 .