Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquén province, Argentina)

We document evidence for growth of an active volcano in a compressional Andean setting. Our data are surface structures and 39Ar‐40Ar ages of volcanic products on Tromen volcano. Tromen is an active back‐arc volcano in the Andean foothills of Neuquén province, Argentina. Its volcanic products are unconformable upon Mesozoic strata of the Neuquén basin. The volcano straddles a N‐S trending pop‐up, which formed during E‐W shortening. The main underlying structures are eastward verging thrusts. Their traces curve around the eastern foot of the volcano. Minor folds and faults also occur in the volcanic cover of Tromen, as a result of E‐W shortening. New 39Ar‐40Ar ages for these volcanic rocks are younger than 2.27 ± 0.10 Ma and show that Tromen has been active almost continuously from the late Pliocene to the Holocene. We conclude that volcanism and thrusting have been coeval and that magma must have reached the surface in a tectonic setting of horizontal compression. Our results have wider implications for magmatic processes in such settings.

[1]  O. Galland,et al.  Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modeling , 2007 .

[2]  U. Riller,et al.  Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina , 2006 .

[3]  O. Galland,et al.  Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust , 2006 .

[4]  S. Kay,et al.  Evolution of the late Miocene Chachahuén volcanic complex at 37°S over a transient shallow subduction zone under the Neuquén Andes , 2006 .

[5]  S. Kay,et al.  Evolution of an Andean margin : a tectonic and magmatic view from the Andes to the Neuquén Basin (35° -39°S lat) , 2006 .

[6]  V. Ramos,et al.  Late Cenozoic extension and the evolution of the Neuquén Andes , 2006 .

[7]  S. Kay,et al.  Early to middle Miocene backarc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America , 2006 .

[8]  S. Kay,et al.  Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin , 2006 .

[9]  M. Zoback,et al.  Stress, strain, and mountain building in central Japan , 2005 .

[10]  P. Cobbold,et al.  Effects of topography on the curvature of fold-and-thrust belts during shortening of a 2-layer model of continental lithosphere , 2005 .

[11]  G. Corti,et al.  Magma emplacement in a thrust ramp anticline: The Gavorrano Granite (northern Apennines, Italy) , 2005 .

[12]  O. Galland,et al.  Coeval volcanic activity and tectonic shortening, Tromen volcano, Neuquén province, Argentina , 2005 .

[13]  F. Tornos,et al.  A new scenario for related IOCG and Ni–(Cu) mineralization: the relationship with giant mid‐crustal mafic sills, Variscan Iberian Massif , 2005 .

[14]  A. Tibaldi Volcanism in compressional tectonic settings: Is it possible? , 2005 .

[15]  V. Ramos,et al.  Structural and magmatic responses to steepening of a flat subduction, southern Mendoza, Argentina , 2005 .

[16]  M. Spagnuolo,et al.  Pliocene to Quaternary retro-arc extension in the Andes at 35° - 37°30' s , 2005 .

[17]  R. Hermanns,et al.  Neotectonics in the foothills of the southernmost central Andes (37°–38°S): Evidence of strike‐slip displacement along the Antiñir‐Copahue fault zone , 2004 .

[18]  M. Toscano,et al.  La estructura sísmica de la corteza de la Zona de Ossa Morena y su interpretación geológica , 2004 .

[19]  R. Sparks,et al.  Evolution and volcanic hazards of Taapaca Volcanic Complex, Central Andes of Northern Chile , 2004, Journal of the Geological Society.

[20]  Amelia Rodríguez Martín,et al.  The seismic crustal structure of the Ossa-Morena Zone and its geological interpretation , 2004 .

[21]  O. Galland Interactions mécaniques entre la tectonique compressive et le magmatisme : expériences analogiques et exemple naturel , 2004 .

[22]  O. Galland,et al.  Physical models of magmatic intrusion during thrusting , 2003 .

[23]  Richard H. Sibson,et al.  Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes , 2003 .

[24]  P. Cobbold,et al.  Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina , 2003 .

[25]  D. Macdonald,et al.  Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32°-54°S) , 2003 .

[26]  T. Torres,et al.  Nuevas especies de Agathoxylon y Baieroxylon del Lías de La Ligua (Chile) con una evaluación del registro paleoxilológico en el Jurásico de Sudamérica , 2002 .

[27]  Daniel Melnick,et al.  Partición de la deformación en la zona del arco volcánico de los Andes neuquinos (36-39°S) en los últimos 30 millones de años , 2002 .

[28]  M. Matteini,et al.  Geodynamical evolution of Central Andes at 24°S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt , 2002 .

[29]  P. Gupta,et al.  Extended Abstracts , 2002, Neonatology.

[30]  P. Cobbold,et al.  Arcuate thrust systems in sandbox experiments: A comparison to the external arcs of the Western Alps , 2002 .

[31]  P. Cobbold,et al.  Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments , 2002 .

[32]  David Hindle,et al.  Consistency of geologic and geodetic displacements during Andean orogenesis , 2002 .

[33]  M. Matteini,et al.  The geochemical variations of the upper cenozoic volcanism along the Calama–Olacapato–El Toro transversal fault system in central Andes (~24°S): petrogenetic and geodynamic implications , 2002 .

[34]  L. Rivera,et al.  Stress tensor analysis of the 1998–1999 tectonic swarm of northern Quito related to the volcanic swarm of Guagua Pichincha volcano, Ecuador , 2002 .

[35]  Detlef Angermann,et al.  Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes , 2001 .

[36]  D. W. Hyndman,et al.  Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho–Bitterroot batholith , 2001 .

[37]  M. Bevis,et al.  An integrated crustal velocity field for the central Andes , 2001 .

[38]  Yannick Branquet,et al.  Effets de la charge des édifices volcaniques sur la propagation de structures régionales compressives : exemples naturels et modèles expérimentaux , 2001 .

[39]  B. Horton,et al.  Influence of Late Cretaceous magmatism on the Sevier orogenic wedge, western Montana , 2001 .

[40]  J. Franzese,et al.  Late Triassic-Early Jurassic continental extension in southwestern Gondwana; tectonic segmentation and pre-break-up rifting , 2001 .

[41]  B. John,et al.  Fault-controlled pluton emplacement in the Sevier fold-and-thrust belt of southwest Montana, USA , 2001 .

[42]  T. Jordan,et al.  Extension and basin formation in the southern Andes caused by increased convergence rate: A mid‐Cenozoic trigger for the Andes , 2001 .

[43]  L. Keszthelyi,et al.  A gravitational spreading origin for the Socompa debris avalanche , 2001 .

[44]  M. Inbar,et al.  A morphological and morphometric analysis of a high density cinder cone volcanic field - Payun Matru, south-central Andes, Argentina , 2001 .

[45]  C. Stern,et al.  The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate , 2000 .

[46]  P. Cobbold,et al.  Bitumen veins and Eocene transpression, Neuquén Basin, Argentina , 1999 .

[47]  Tohru Watanabe,et al.  Tectonic stress controls on ascent and emplacement of magmas , 1999 .

[48]  G. Ruffet,et al.  40Ar/39Ar dating of shear zones in the Variscan basement of Greater Kabylia (Algeria). Evidence of an Eo-Alpine event at 128 Ma (Hauterivian–Barremian boundary): geodynamic consequences , 1999 .

[49]  M. Bevis,et al.  Current rates of convergence across the central Andes : Estimates from continuous GPS observations , 1999 .

[50]  R. Somoza Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region , 1998 .

[51]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[52]  S. Kay,et al.  THE EVOLUTION OF THE ALTIPLANO-PUNA PLATEAU OF THE CENTRAL ANDES , 1997 .

[53]  J. Dewey,et al.  Cenozoic evolution of the Central Andes in Bolivia and northern Chile , 1997, Geological Society, London, Special Publications.

[54]  W. E. Stephens,et al.  Granite: From Segregation of Melt to Emplacement Fabrics , 1997 .

[55]  D. Hutton Syntectonic Granites and the Principle of Effective Stress: A General Solution to the Space Problem? , 1997 .

[56]  P. Treloar Volcanism Associated with Extension at Consuming Plate Margins , 1995, Mineralogical Magazine.

[57]  G. Ruffet,et al.  Plateau ages and excess argon in phengites: an 40Ar39Ar laser probe study of Alpine micas (Sesia Zone, Western Alps, northern Italy) , 1995 .

[58]  D. Figueroa,et al.  Inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina , 1995 .

[59]  H. Welsink,et al.  Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina , 1995 .

[60]  M. Suárez,et al.  The stratigraphy, geochronology and paleophysiography of a Miocene fresh-water interarc basin, southern Chile , 1995 .

[61]  Tom Simkin,et al.  Volcanoes of the World: A Regional Directory, Gazetteer, and Chronology of Volcanism During the Last 10,000 Years , 1994 .

[62]  W. Hamilton Subduction systems and magmatism , 1994, Geological Society, London, Special Publications.

[63]  R. Marrett,et al.  The relations between faulting and mafic magmatism in the Altiplano-Puna plateau (central Andes) , 1992 .

[64]  A. Glazner Plutonism, oblique subduction, and continental growth: An example from the Mesozoic of California , 1991 .

[65]  G. Ruffet,et al.  Comparison of 40Ar-39Ar conventional and laser dating of biotites from the North Trégor Batholith , 1991 .

[66]  J. Angelier,et al.  Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means , 1990 .

[67]  C. Stern,et al.  Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America , 1990 .

[68]  S. L. Silva Altiplano-Puna volcanic complex of the central Andes , 1989 .

[69]  P. Molnar,et al.  Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time , 1987 .

[70]  D. C. Gerlach,et al.  Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41°S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust , 1986 .

[71]  M. Zentilli,et al.  Field characteristics of laterally emplaced dikes: Anatomy of an exhumed Miocene dike swarm in Reydarfjördur, eastern Iceland , 1985 .

[72]  J. Angelier,et al.  Tectonic analysis of fault slip data sets , 1984 .

[73]  Agust Gudmundsson Tectonic aspects of Dykes in Northwestern Iceland , 1984 .

[74]  Raúl N. Dessanti Descripción Geológica de la Hoja 28b, Malargüe , 1978 .

[75]  F. Munizaga,et al.  Age and Evolution of the Upper Cenozoic Andesitic Volcanism in Central-South Chile , 1974 .

[76]  Walter Zöllner,et al.  Descripción Geológica de la Hoja 32b, Chos Malal , 1973 .