Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox

[1]  Chun Jimmie Ye,et al.  Genome-wide prediction of disease variant effects with a deep protein language model , 2023, Nature Genetics.

[2]  J. An,et al.  Enhancement of the viability of T cells electroporated with DNA via osmotic dampening of the DNA-sensing cGAS–STING pathway , 2023, Nature biomedical engineering.

[3]  Daniel S. Kim,et al.  The ENCODE Uniform Analysis Pipelines , 2023, bioRxiv.

[4]  Z. Ivics,et al.  Passer, a highly active transposon from a fish genome, as a potential new robust genetic manipulation tool , 2023, Nucleic acids research.

[5]  E. Betrán,et al.  Recurrent co-domestication of PIF/Harbinger transposable element proteins in insects , 2022, Mobile DNA.

[6]  W. Han,et al.  Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. , 2022, Cancer cell.

[7]  Maxwell D. Sanderford,et al.  TimeTree 5: An Expanded Resource for Species Divergence Times , 2022, Molecular biology and evolution.

[8]  A. Biondi,et al.  The Past, Present, and Future of Non-Viral CAR T Cells , 2022, Frontiers in Immunology.

[9]  A. Madi,et al.  Frequent Aneuploidy in Primary Human T Cells after CRISPR-Cas9 cleavage , 2022, Nature biotechnology.

[10]  M. Juan,et al.  Physiological lentiviral vectors for the generation of improved CAR-T cells , 2022, Molecular therapy oncolytics.

[11]  B. Gao,et al.  Horizontal Transfer of Buster Transposons across Multiple Phyla and Classes of Animals. , 2022, Molecular phylogenetics and evolution.

[12]  H. Quesneville,et al.  Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila , 2022, Nature communications.

[13]  E. Miska,et al.  Taming transposable elements in vertebrates: from epigenetic silencing to domestication. , 2022, Trends in genetics : TIG.

[14]  Antonio Palazzo,et al.  What Have We Learned in 30 Years of Investigations on Bari Transposons? , 2022, Cells.

[15]  F. Prósper,et al.  CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome , 2022, medRxiv.

[16]  S. Berger,et al.  An NK-like CAR T cell transition in CAR T cell dysfunction , 2021, Cell.

[17]  Z. Ivics,et al.  Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells , 2021, Human gene therapy.

[18]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[19]  Graham L. Banes,et al.  DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans , 2021, Nature Communications.

[20]  J. Kochenderfer,et al.  A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains , 2021, Nature Reviews Clinical Oncology.

[21]  S. Boissinot,et al.  The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes , 2021, Genes.

[22]  Z. Ivics,et al.  Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering , 2021, International journal of molecular sciences.

[23]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[24]  F. Müller,et al.  A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates , 2021, Nucleic acids research.

[25]  Elverson Soares de Melo,et al.  Mosquito genomes are frequently invaded by transposable elements through horizontal transfer , 2020, PLoS genetics.

[26]  H. Einsele,et al.  P09.08 Clinical-grade manufacturing of ROR1 CAR T cells using a novel virus-free protocol , 2020 .

[27]  C. Feschotte,et al.  A Field Guide to Eukaryotic Transposable Elements. , 2020, Annual review of genetics.

[28]  Maximilian Amberger,et al.  Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[30]  Sofia M. C. Robb,et al.  Genomic diversity generated by a transposable element burst in a rice recombinant inbred population , 2020, Proceedings of the National Academy of Sciences.

[31]  P. Wei,et al.  Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. , 2020, Immunity.

[32]  Xiaoyan Wang,et al.  Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates , 2020, Mobile DNA.

[33]  Ellen J. Spartz,et al.  T Cell Receptor Engineered Lymphocytes for Cancer Therapy , 2020, Current protocols in immunology.

[34]  A. Zhong,et al.  Recurrent evolution of vertebrate transcription factors by transposase capture , 2020, Science.

[35]  J. Peccoud,et al.  Horizontal transfer and evolution of transposable elements in vertebrates , 2020, Nature Communications.

[36]  W. Han,et al.  TGFβ inhibition via CRISPR promotes the long-term efficacy of CAR-T cells against solid tumors. , 2020, JCI insight.

[37]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[38]  Samantha A. Morris,et al.  Self-Reporting Transposons Enable Simultaneous Readout of Gene Expression and Transcription Factor Binding in Single Cells , 2019, Cell.

[39]  J. Peccoud,et al.  Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot , 2019, PLoS genetics.

[40]  Kun Dou,et al.  A Robust Transposon-Endogenizing Response from Germline Stem Cells. , 2018, Developmental cell.

[41]  Z. Ivics,et al.  Non-viral therapeutic cell engineering with the Sleeping Beauty transposon system. , 2018, Current opinion in genetics & development.

[42]  Haoyi Wang,et al.  Bacteria-free minicircle DNA system to generate integration-free CAR-T cells , 2018, Journal of Medical Genetics.

[43]  C. Feschotte,et al.  Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. , 2018, Current opinion in genetics & development.

[44]  A. Kamphorst,et al.  CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. , 2018, Annual review of medicine.

[45]  J. Melenhorst,et al.  Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. , 2018, JCI insight.

[46]  M. Nilges,et al.  Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase , 2017, Nucleic acids research.

[47]  Z. Izsvák,et al.  Gene Therapy with the Sleeping Beauty Transposon System. , 2017, Trends in genetics : TIG.

[48]  Josefa González,et al.  Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. , 2017, Trends in genetics : TIG.

[49]  E. Betrán,et al.  Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. , 2017, Trends in genetics : TIG.

[50]  K. Kawakami,et al.  Transposons As Tools for Functional Genomics in Vertebrate Models. , 2017, Trends in genetics : TIG.

[51]  David M Kranz,et al.  Generation of TCRs of higher affinity by antigen-driven differentiation of progenitor T cells in vitro , 2017, Nature Biotechnology.

[52]  J. Orange,et al.  Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. , 2017, Cell reports.

[53]  Moriah H Nissan,et al.  OncoKB: A Precision Oncology Knowledge Base. , 2017, JCO precision oncology.

[54]  J. Peccoud,et al.  Massive horizontal transfer of transposable elements in insects , 2017, Proceedings of the National Academy of Sciences.

[55]  T. Sultana,et al.  Integration site selection by retroviruses and transposable elements in eukaryotes , 2017, Nature Reviews Genetics.

[56]  Mithat Gönen,et al.  Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection , 2017, Nature.

[57]  R. Mitra,et al.  An optimized, broadly applicable piggyBac transposon induction system , 2017, Nucleic acids research.

[58]  S. Wessler,et al.  Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti , 2017, Mobile DNA.

[59]  P. Capy,et al.  Experimental evolution reveals hyperparasitic interactions among transposable elements , 2016, Proceedings of the National Academy of Sciences.

[60]  Yi-Chien Lee,et al.  Temporal self-regulation of transposition through host-independent transposase rodlet formation , 2016, Nucleic acids research.

[61]  Kazunori D. Yamada,et al.  Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees , 2016, Bioinform..

[62]  Thomas M. Schmitt,et al.  Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[63]  Anita C Jones,et al.  A bend, flip and trap mechanism for transposon integration , 2016, eLife.

[64]  Z. Izsvák,et al.  Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering , 2016, Nature Communications.

[65]  Andreas Gogol-Döring,et al.  A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes , 2016, Nature Communications.

[66]  Ann A. Ferguson,et al.  What makes up plant genomes: The vanishing line between transposable elements and genes. , 2016, Biochimica et biophysica acta.

[67]  P. Atkinson hAT Transposable Elements , 2015, Microbiology spectrum.

[68]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[69]  William Stafford Noble,et al.  The MEME Suite , 2015, Nucleic Acids Res..

[70]  J. Dornan,et al.  Structural role of the flanking DNA in mariner transposon excision , 2015, Nucleic acids research.

[71]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[72]  Ann A. Ferguson,et al.  Transposition of a Rice Mutator-Like Element in the Yeast Saccharomyces cerevisiae , 2015, Plant Cell.

[73]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[74]  Maite G. Barrón,et al.  Population genomics of transposable elements in Drosophila. , 2014, Annual review of genetics.

[75]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[76]  A. Bax,et al.  Structural Basis of hAT Transposon End Recognition by Hermes, an Octameric DNA Transposase from Musca domestica , 2014, Cell.

[77]  C. Ané,et al.  A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. , 2014, Systematic biology.

[78]  Danxu Liu,et al.  Hyperactive mariner transposons are created by mutations that disrupt allosterism and increase the rate of transposon end synapsis , 2013, Nucleic acids research.

[79]  B. Piégu,et al.  Transposase concentration controls transposition activity: myth or reality? , 2013, Gene.

[80]  L. Chicaybam,et al.  An Efficient Low Cost Method for Gene Transfer to T Lymphocytes , 2013, PloS one.

[81]  M. Raffeld,et al.  B-cell Maturation Antigen Is a Promising Target for Adoptive T-cell Therapy of Multiple Myeloma , 2013, Clinical Cancer Research.

[82]  R. Mitra,et al.  Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon , 2012, Proceedings of the National Academy of Sciences.

[83]  F. Bushman,et al.  Comparative Analysis of the Recently Discovered hAT Transposon TcBuster in Human Cells , 2012, PloS one.

[84]  F. Bushman,et al.  A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture , 2012, Proceedings of the National Academy of Sciences.

[85]  H. Zhang,et al.  pIRS: Profile-based Illumina pair-end reads simulator , 2012, Bioinform..

[86]  S. Haase,et al.  New and Redesigned pRS Plasmid Shuttle Vectors for Genetic Manipulation of Saccharomyces cerevisiae , 2012, G3: Genes | Genomes | Genetics.

[87]  Casey M. Bergman,et al.  Whole Genome Resequencing Reveals Natural Target Site Preferences of Transposable Elements in Drosophila melanogaster , 2012, PloS one.

[88]  Michel Sadelain,et al.  Safe harbours for the integration of new DNA in the human genome , 2011, Nature Reviews Cancer.

[89]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[90]  E. Wherry T cell exhaustion , 2011, Nature Immunology.

[91]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[92]  D. O’brochta,et al.  Phylogenetic and Functional Characterization of the hAT Transposon Superfamily , 2011, Genetics.

[93]  S. Wessler,et al.  The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies , 2011, Proceedings of the National Academy of Sciences.

[94]  A. Bradley,et al.  A hyperactive piggyBac transposase for mammalian applications , 2011, Proceedings of the National Academy of Sciences.

[95]  Nils Homer,et al.  A survey of sequence alignment algorithms for next-generation sequencing , 2010, Briefings Bioinform..

[96]  K. Kawakami,et al.  Comparative analysis of transposable element vector systems in human cells. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[97]  Russell B. Fletcher,et al.  The Genome of the Western Clawed Frog Xenopus tropicalis , 2010, Science.

[98]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[99]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[100]  M. Walkinshaw,et al.  Molecular Architecture of the Mos1 Paired-End Complex: The Structural Basis of DNA Transposition in a Eukaryote , 2009, Cell.

[101]  Dawn H. Nagel,et al.  Tuned for Transposition: Molecular Determinants Underlying the Hyperactivity of a Stowaway MITE , 2009, Science.

[102]  D. Campana,et al.  Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[103]  J. Boeke,et al.  Transposon-mediated genome manipulation in vertebrates , 2009, Nature Methods.

[104]  Boris Jerchow,et al.  Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates , 2009, Nature Genetics.

[105]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[106]  F. Bushman,et al.  Bacteriophage Mu integration in yeast and mammalian genomes , 2008, Nucleic acids research.

[107]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[108]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[109]  J. Jurka,et al.  Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes , 2008, Proceedings of the National Academy of Sciences.

[110]  Ruggiero Caizzi,et al.  Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons , 2008, Molecular Genetics and Genomics.

[111]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[112]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[113]  S. Oehler,et al.  The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates , 2007, Genome Biology.

[114]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[115]  X. Wang,et al.  Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates , 2006, PLoS genetics.

[116]  Min Han,et al.  Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice , 2005, Cell.

[117]  R. Ghirlando,et al.  Molecular architecture of a eukaryotic DNA transposase , 2005, Nature Structural &Molecular Biology.

[118]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[119]  K. Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[120]  R. Plasterk,et al.  The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. , 2003, Nucleic acids research.

[121]  P. Hackett,et al.  Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. , 2002, Journal of molecular biology.

[122]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[123]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[124]  R. Plasterk,et al.  Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. , 2000, Journal of molecular biology.

[125]  L. Aravind The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. , 2000, Trends in biochemical sciences.

[126]  C. Feschotte,et al.  Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. , 2000, Molecular biology and evolution.

[127]  S. Beverley,et al.  cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. , 2000, Nucleic acids research.

[128]  R. Plasterk,et al.  Resident aliens: the Tc1/mariner superfamily of transposable elements. , 1999, Trends in genetics : TIG.

[129]  S. Iida,et al.  Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory. , 1998, The Plant journal : for cell and molecular biology.

[130]  M. Chandler,et al.  Insertion Sequences , 1998, Microbiology and Molecular Biology Reviews.

[131]  R. Plasterk,et al.  Molecular Reconstruction of Sleeping Beauty , a Tc1-like Transposon from Fish, and Its Transposition in Human Cells , 1997, Cell.

[132]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[133]  D. Hartl,et al.  Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[134]  Sandro Santagata,et al.  The Homeodomain Region of Rag-1 Reveals the Parallel Mechanisms of Bacterial and V(D)J Recombination , 1996, Cell.

[135]  M. Churchill,et al.  A purified mariner transposase is sufficient to mediate transposition in vitro. , 1996 .

[136]  Z. Izsvák,et al.  Identification of functional domains and evolution of Tc1-like transposable elements. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[137]  A. Smit,et al.  Tiggers and DNA transposon fossils in the human genome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[139]  R. Kunze,et al.  Dominant transposition-deficient mutants of maize Activator (Ac) transposase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[140]  A. Handler,et al.  Mobility of P elements in drosophilids and nondrosophilids. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[141]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[142]  B. Mcclintock Mutable Loci in Maize , 1951 .

[143]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[144]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[145]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[146]  H. Einsele,et al.  Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors , 2017, Leukemia.

[147]  N. Craig A Moveable Feast: An Introduction to Mobile DNA , 2015 .

[148]  D. Rio,et al.  P Transposable Elements in Drosophila and other Eukaryotic Organisms , 2015, Microbiology spectrum.

[149]  R. Chalmers,et al.  Mariner and the ITm Superfamily of Transposons , 2015, Microbiology spectrum.

[150]  T. Garland,et al.  Phylogenetic logistic regression for binary dependent variables. , 2010, Systematic biology.

[151]  Jonathan B. Clark,et al.  Factors that affect the horizontal transfer of transposable elements. , 2004, Current issues in molecular biology.

[152]  D. Hartl,et al.  Regulation of the transposable element mariner , 2004, Genetica.

[153]  Cédric Feschotte,et al.  Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons , 2002 .

[154]  D. Hartl,et al.  Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. , 1995, Molecular biology and evolution.

[155]  B. Mcclintock,et al.  Controlling elements and the gene. , 1956, Cold Spring Harbor symposia on quantitative biology.

[156]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .