Design process for robotic medical tool guidance manipulators

This paper deals with the design process adapted to medical robots. The large diversity of kinematic architectures that can be encountered in medical robotics leads us to seek a robust method dedicated to tool-guidance medical robot design. First, we detail a proposed design process adapted especially for handling the inherent needs in tool-guidance in medical robotics. This proposed method ties together the phases of the design process with their respective tools. We describe the spectrum of medical robots and particularly the variety of kinematic architectures used. Each phase of the design process is detailed through application examples in the domains of tele-echography and minimally invasive surgery, which exhibit a number of commonalities. The use of tools for accomplishing the various steps of the design process is detailed, with emphasis on medical gesture analysis. This is followed by topological and dimensional synthesis. This study illustrates how the type of medical robot can impose specific requirements and a particular approach in the design process. We expect through this paper to bring a significant contribution to the design of medical tool-guidance robots and to facilitate their integration in the clinical environment. The main contribution of this work is to propose a design process method for robotic medical tool-guidance manipulators.

[1]  Brice Gayet,et al.  Modified Robotic Lightweight Endoscope (ViKY) Validation In Vivo in a Porcine Model , 2007, Surgical innovation.

[2]  Gabriel Brisson The Precision Freehand Sculptor: A robotic tool for less invasive joint replacement surgery , 2008 .

[3]  Etienne Dombre,et al.  Hippocrate: a safe robot arm for medical applications with force feedback , 1999, Medical Image Anal..

[4]  M. Baker,et al.  Online epistemic communities: theoretical and methodological directions for understanding knowledge co-elaboration in new digital spaces. , 2012, Work.

[5]  John Kenneth Salisbury,et al.  The Intuitive/sup TM/ telesurgery system: overview and application , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Philippe Cinquin,et al.  Image guided operating robot: a clinical application in stereotactic neurosurgery , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[7]  Tobias Ortmaier,et al.  Teleoperation Concepts in Minimal Invasive Surgery , 2001 .

[8]  J. Angeles The Qualitative Synthesis of Parallel Manipulators , 2004 .

[9]  G. Poisson,et al.  Fetal tele‐echography using a robotic arm and a satellite link , 2005, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[10]  Gilles Duchemin Commande et programmation d'un robot d'assistance au geste médical pour des tâches de suivi au contact de tissus mous , 2002 .

[11]  Lama Al Bassit Structures mécaniques à modules sphériques optimisées pour un robot médical de télé-échographie mobile , 2005 .

[12]  Blake Hannaford,et al.  The RAVEN: Design and Validation of a Telesurgery System , 2009, Int. J. Robotics Res..

[13]  Philippe Cinquin,et al.  LER: the light endoscope robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[14]  Med Amine Laribi,et al.  Optimal synthesis of a spherical parallel mechanism for medical application , 2014, Robotica.

[15]  Nariman Sepehri,et al.  A novel hand-controller for remote ultrasound imaging , 2008 .

[16]  Chin-Hsing Kuo,et al.  Kinematic design considerations for minimally invasive surgical robots: an overview , 2012, The international journal of medical robotics + computer assisted surgery : MRCAS.

[17]  Crispin Hales,et al.  Engineering design: a systematic approach , 1989 .

[18]  Gérard Poisson,et al.  Design and Optimization of a Master-Slave System for Tele-Echography Application , 2012 .

[19]  H. Kwee,et al.  First experimentation of the Spartacus telethesis in a clinical environment , 1983, Paraplegia.

[20]  Tarcisio A. Hess-Coelho,et al.  Topological Synthesis of a Parallel Wrist Mechanism , 2004 .

[21]  Gérard Poisson,et al.  Optimal Synthesis of a New Spherical Parallel Mechanism for Application to Tele-Echography Chain , 2011 .

[22]  Natalie Smith-Guerin,et al.  A medical robot kinematics design approach based on knowledge management , 2008, Ind. Robot.

[23]  P. Finlay,et al.  Controlled trial of the introduction of a robotic camera assistant (Endo Assist) for laparoscopic cholecystectomy , 2002, Surgical Endoscopy And Other Interventional Techniques.

[24]  J. Hervé Analyse structurelle des mcanismes par groupe des dplacements , 1978 .

[25]  Grigore Gogu Structural synthesis of parallel robots. , 2008 .

[26]  Clément Gosselin,et al.  A Global Performance Index for the Kinematic Optimization of Robotic Manipulators , 1991 .

[27]  Benjamin Maurin Conception et réalisation d'un robot d'insertion d'aiguille pour les procédures percutanées sous imageur scanner , 2005 .

[28]  Nabil Zemiti Commande en effort des systèmes robotiques pour la chirurgie mini-invasive , 2005 .

[29]  Carl A. Nelson,et al.  Multiple-criteria kinematic optimization for the design of spherical serial mechanisms using genetic algorithms , 2010 .

[30]  Jacques Marescaux,et al.  Transatlantic robot-assisted telesurgery , 2001, Nature.

[31]  Bertrand Tondu,et al.  TER: A System for Robotic Tele-echography , 2001, MICCAI.

[32]  Rajni V. Patel,et al.  Haptic interaction in robot‐assisted endoscopic surgery: a sensorized end‐effector , 2005, The international journal of medical robotics + computer assisted surgery : MRCAS.

[33]  Olivier Chavanon,et al.  Aide informatisée aux gestes de chirurgie cardiaque , 2003 .

[34]  D. Sallé Conception optimale d'instruments robotisés à haute mobilité pour la chirurgie mini-invasive , 2004 .

[35]  Peter Kazanzides,et al.  An image-directed robotic system for precise orthopaedic surgery , 1994, IEEE Trans. Robotics Autom..

[36]  Blake Hannaford,et al.  Hybrid analysis of a spherical mechanism for a minimally invasive surgical (MIS) robot--design concepts for multiple optimizations. , 2006, Studies in health technology and informatics.

[37]  P. Marche,et al.  A new robotic mechanism for medical application , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[38]  Carl A. Nelson,et al.  Improvements to the Design of a Compact Robot for Minimally Invasive Surgery , 2011 .

[39]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[40]  Jorge Angeles,et al.  THE ROLE OF ENTROPY IN DESIGN THEORY AND METHODOLOGY , 2011 .

[41]  Jian S. Dai,et al.  Robotics for Minimally Invasive Surgery: A Historical Review from the Perspective of Kinematics , 2009 .

[42]  G. Poisson,et al.  Use of a robotic arm to perform remote abdominal telesonography. , 2007, AJR. American journal of roentgenology.

[43]  Janet L. Kolodner,et al.  An introduction to case-based reasoning , 1992, Artificial Intelligence Review.

[44]  Carl A. Nelson,et al.  Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation , 2008 .

[45]  Gérard Poisson,et al.  Process of optimisation for a 4 DOF tele-echography robot , 2012, Robotica.

[46]  Blake Hannaford,et al.  Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches , 2006, IEEE Transactions on Biomedical Engineering.

[47]  Gérard Poisson,et al.  Contribution to the design of robotized tele-echography system , 2012 .

[48]  Frank Chongwoo Park,et al.  Performance Evaluation and Design Criteria , 2008, Springer Handbook of Robotics.

[49]  Gérard Poisson,et al.  A specific performances comparative study of two spherical robots for tele-echography application , 2014 .