Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity

Abstract As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates—namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose–methanol–choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases—we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.

[1]  D. Ahrén,et al.  Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi , 2020, The ISME Journal.

[2]  G. Sipos,et al.  Hallmarks of basidiomycete soft- and white-rot in wood-decay -omics data of Armillaria , 2020, bioRxiv.

[3]  B. Henrissat,et al.  Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus , 2020, DNA research : an international journal for rapid publication of reports on genes and genomes.

[4]  B. Henrissat,et al.  Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions , 2020, Scientific Reports.

[5]  M. Hofrichter,et al.  Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions , 2020 .

[6]  B. Henrissat,et al.  Fungal ecological strategies reflected in gene transcription - a case study of two litter decomposers. , 2019, Environmental microbiology.

[7]  J. Rencoret,et al.  Peroxidase evolution in white-rot fungi follows wood lignin evolution in plants , 2019, Proceedings of the National Academy of Sciences.

[8]  Yu-Cheng Dai,et al.  Comparative genomics of 40 edible and medicinal mushrooms provide an insight into the evolution of lignocellulose decomposition mechanisms , 2019, 3 Biotech.

[9]  Anna Lipzen,et al.  Megaphylogeny resolves global patterns of mushroom evolution , 2019, Nature Ecology & Evolution.

[10]  B. Henrissat,et al.  AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes , 2019, Biotechnology for Biofuels.

[11]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[12]  D. Hibbett,et al.  Evolutionary dynamics of host specialization in wood-decay fungi , 2018, BMC Evolutionary Biology.

[13]  S. Purvine,et al.  Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi , 2018, Applied and Environmental Microbiology.

[14]  F. J. Ruiz-Dueñas,et al.  Evolutionary convergence in lignin-degrading enzymes , 2018, Proceedings of the National Academy of Sciences.

[15]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[16]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[17]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[18]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[19]  B. Henrissat,et al.  Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass , 2018, bioRxiv.

[20]  Ángel T. Martínez,et al.  Chapter 8:Biological Lignin Degradation , 2018 .

[21]  B. Henrissat,et al.  Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. , 2018, Nature chemical biology.

[22]  Sean Doyle,et al.  Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria , 2017, Nature Ecology & Evolution.

[23]  F. J. Ruiz-Dueñas,et al.  Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date , 2017, Biotechnology for Biofuels.

[24]  D. Hibbett,et al.  Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution , 2017, Molecular biology and evolution.

[25]  J. Rencoret,et al.  Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin , 2016, Biotechnology for Biofuels.

[26]  V. Guallar,et al.  Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid , 2016 .

[27]  D. Hibbett,et al.  Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. , 2016, Molecular biology and evolution.

[28]  Ángel T. Martínez,et al.  Fungal Aryl-Alcohol Oxidase in Lignocellulose Degradation and Bioconversion , 2016 .

[29]  P. Ferreira,et al.  A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes , 2015, Mycologia.

[30]  I. Grigoriev,et al.  Genetic isolation between two recently diverged populations of a symbiotic fungus , 2015, Molecular ecology.

[31]  S. Hofbauer,et al.  Independent evolution of four heme peroxidase superfamilies , 2015, Archives of biochemistry and biophysics.

[32]  D. Hibbett,et al.  Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. , 2015, Fungal genetics and biology : FG & B.

[33]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[34]  Richard H Scheuermann,et al.  A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway , 2015, Evolutionary bioinformatics online.

[35]  David Tse,et al.  FinisherSC : A repeat-aware tool for upgrading de-novo assembly using long reads , 2014, bioRxiv.

[36]  R. D. de Vries,et al.  Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes , 2014, Microbiology and Molecular Reviews.

[37]  V. Guallar,et al.  Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi , 2014, Acta crystallographica. Section D, Biological crystallography.

[38]  D. Archer,et al.  Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. , 2014, Fungal genetics and biology : FG & B.

[39]  A. Salamov,et al.  Genomics of wood-degrading fungi. , 2014, Fungal genetics and biology : FG & B.

[40]  D. Cullen,et al.  Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. , 2014, Fungal genetics and biology : FG & B.

[41]  F. Martin,et al.  Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. , 2014, The New phytologist.

[42]  A. Salamov,et al.  Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi , 2014, Proceedings of the National Academy of Sciences.

[43]  D. Kapturska,et al.  Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils , 2014, PloS one.

[44]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[45]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[46]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[47]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[48]  T. Lundell,et al.  Genomics, Lifestyles and Future Prospects of Wood-Decay and Litter-Decomposing Basidiomycota , 2014 .

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[50]  Jian Chen,et al.  Cutinase: characteristics, preparation, and application. , 2013, Biotechnology advances.

[51]  A. Salamov,et al.  Phylogenetic and phylogenomic overview of the Polyporales , 2013, Mycologia.

[52]  D. Hibbett,et al.  Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes , 2013, Mycologia.

[53]  Mira V. Han,et al.  Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. , 2013, Molecular biology and evolution.

[54]  V. Guallar,et al.  Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism. , 2013, The Biochemical journal.

[55]  Thomas M. Keane,et al.  Genomic and Proteomic Dissection of the Ubiquitous Plant Pathogen, Armillaria mellea: Toward a New Infection Model System , 2013, Journal of proteome research.

[56]  Kristin E. Burnum-Johnson,et al.  Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens , 2013, Applied and Environmental Microbiology.

[57]  Shengyue Wang,et al.  Sequencing and Comparative Analysis of the Straw Mushroom (Volvariella volvacea) Genome , 2013, PloS one.

[58]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[59]  Vincent Lombard,et al.  Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche , 2012, Proceedings of the National Academy of Sciences.

[60]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[61]  C. Schmidt-Dannert,et al.  Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. , 2012, Chemistry & biology.

[62]  A. Salamov,et al.  Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis , 2012, Proceedings of the National Academy of Sciences.

[63]  R. Samworth Optimal weighted nearest neighbour classifiers , 2011, 1101.5783.

[64]  L. Lo Leggio,et al.  Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components , 2011, Proceedings of the National Academy of Sciences.

[65]  A. Salamov,et al.  The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi , 2011, Science.

[66]  M. Hofrichter,et al.  Oxidative cleavage of non-phenolic β-O-4 lignin model dimers by an extracellular aromatic peroxygenase , 2011 .

[67]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[68]  R. Basosi,et al.  Crystallographic, Kinetic, and Spectroscopic Study of the First Ligninolytic Peroxidase Presenting a Catalytic Tyrosine* , 2011, The Journal of Biological Chemistry.

[69]  J. Rencoret,et al.  Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. , 2011, Environmental microbiology.

[70]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[71]  Vincent Lombard,et al.  Genome sequence of the model mushroom Schizophyllum commune , 2010, Nature Biotechnology.

[72]  Q. Zeng,et al.  Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) , 2010, Proceedings of the National Academy of Sciences.

[73]  Liam J. Revell,et al.  Size-Correction and Principal Components for Interspecific Comparative Studies , 2009, Evolution; international journal of organic evolution.

[74]  M. Hofrichter,et al.  Oxidative Cleavage of Diverse Ethers by an Extracellular Fungal Peroxygenase* , 2009, The Journal of Biological Chemistry.

[75]  A. Gutiérrez,et al.  Enzymatic delignification of plant cell wall: from nature to mill. , 2009, Current opinion in biotechnology.

[76]  Jill Gaskell,et al.  Transcriptome and Secretome Analyses of Phanerochaete chrysosporium Reveal Complex Patterns of Gene Expression , 2009, Applied and Environmental Microbiology.

[77]  A. Salamov,et al.  Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion , 2009, Proceedings of the National Academy of Sciences.

[78]  F. J. Ruiz-Dueñas,et al.  Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. , 2009, Journal of experimental botany.

[79]  P. Baldrian,et al.  Degradation of cellulose by basidiomycetous fungi. , 2008, FEMS microbiology reviews.

[80]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[81]  Y. Van de Peer,et al.  The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis , 2008, Nature.

[82]  Francis W. M. R. Schwarze,et al.  WOOD DECAY UNDER THE MICROSCOPE , 2007 .

[83]  T. Cajthaml,et al.  Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest , 2007 .

[84]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[85]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[86]  Flavia Autore,et al.  Structural characterization of heterodimeric laccases from Pleurotus ostreatus , 2007, Applied Microbiology and Biotechnology.

[87]  K. Piontek,et al.  Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. , 2007, Biochemistry.

[88]  Nello Cristianini,et al.  CAFE: a computational tool for the study of gene family evolution , 2006, Bioinform..

[89]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[90]  Katherine H. Huang,et al.  Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78 , 2004, Nature Biotechnology.

[91]  Jørgen Holst Christensen,et al.  Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids , 2004, Phytochemistry Reviews.

[92]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[93]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[94]  M. Gelpke,et al.  Manganese peroxidase. , 2000, Metal ions in biological systems.

[95]  G. Daniel,et al.  Developments in the Study of Soft Rot and Bacterial Decay , 1997 .

[96]  F. Guillén,et al.  Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation , 1997, Applied and environmental microbiology.

[97]  N. Batjes,et al.  Total carbon and nitrogen in the soils of the world , 1996 .

[98]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[99]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[100]  G. Daniel,et al.  Soft rot and multiple T-branching by the basidiomycete Oudemansiella mucida , 1992 .

[101]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[102]  L. Brillouin,et al.  Science and information theory , 1956 .