For Blighted Waves of Grain: Fusarium graminearum in the Postgenomics Era

Fungi display astounding diversity in their pathogenicity. We categorize them as biotrophs or necrotrophs and as obligate or facultative pathogens, but these categories do not reflect their polymorphic nature. Our approach to controlling disease would be better served by improving our understanding

[1]  F. Trail,et al.  Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum) , 2002, Mycologia.

[2]  F. Trail,et al.  The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat , 2005, Mycologia.

[3]  Yin-Won Lee,et al.  Identification of differentially expressed proteins in a mat1-2-deleted strain of Gibberella zeae, using a comparative proteomics analysis , 2008, Current Genetics.

[4]  S. Chao,et al.  Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. , 2002, Molecular plant-microbe interactions : MPMI.

[5]  Steven Vogel,et al.  Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fuarium graminearum). , 2005, Fungal genetics and biology : FG & B.

[6]  Shin-Han Shiu,et al.  Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. , 2007, Fungal genetics and biology : FG & B.

[7]  D. Geiser,et al.  Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. , 2007, Fungal genetics and biology : FG & B.

[8]  G. Muehlbauer,et al.  Transcriptome analysis of the barley-Fusarium graminearum interaction. , 2006, Molecular plant-microbe interactions : MPMI.

[9]  H. Giese,et al.  Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. , 2005, Fungal genetics and biology : FG & B.

[10]  J. Leslie,et al.  Fusarium graminearum : When species concepts collide , 2008 .

[11]  Keiko Yoshioka,et al.  NPS6, Encoding a Nonribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, Is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes[W] , 2006, The Plant Cell Online.

[12]  Myoung-Dong Kim,et al.  A novel F‐box protein involved in sexual development and pathogenesis in Gibberella zeae , 2007, Molecular microbiology.

[13]  G. Turner,et al.  The Aspergillus nidulans alcA promoter drives tightly regulated conditional gene expression in Aspergillus fumigatus permitting validation of essential genes in this human pathogen. , 2003, Fungal genetics and biology : FG & B.

[14]  W. Bushnell,et al.  Breeding wheat for Fusarium head blight resistance in Europe. , 2003 .

[15]  W. Schäfer,et al.  Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1 , 2003, Current Genetics.

[16]  R. Proctor,et al.  Possible Role of Trichothecene Mycotoxins in Virulence of Fusarium graminearum on Maize. , 1999, Plant disease.

[17]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[18]  Jan Utermark,et al.  Role of Zearalenone Lactonase in Protection of Gliocladium roseum from Fungitoxic Effects of the Mycotoxin Zearalenone , 2006, Applied and Environmental Microbiology.

[19]  P. Bork,et al.  Molecular eco-systems biology: towards an understanding of community function , 2008, Nature Reviews Microbiology.

[20]  Won-Bo Shim,et al.  Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae , 2008, Microbiology.

[21]  Kap-Hoon Han,et al.  Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae , 2005, Molecular microbiology.

[22]  W. Bushnell,et al.  Histology and physiology of Fusarium head blight. , 2003 .

[23]  G. Munkvold,et al.  Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies. , 2008, Journal of agricultural and food chemistry.

[24]  J. Galagan,et al.  RIP: the evolutionary cost of genome defense. , 2004, Trends in genetics : TIG.

[25]  K. Kitamoto,et al.  Development of Aspergillus oryzae thiA promoter as a tool for molecular biological studies. , 2005, FEMS microbiology letters.

[26]  A. Mesecar,et al.  Antimycobacterial Naphthopyrones from Senna obliqua. , 2004, Journal of natural products.

[27]  L. Harris,et al.  Proteomic analyses of Fusarium graminearum grown under mycotoxin‐inducing conditions , 2008, Proteomics.

[28]  F. Trail,et al.  Perithecial development by Gibberella zeae: a light microscopy study , 2000 .

[29]  M. Stadler,et al.  Paradigm shifts in fungal secondary metabolite research. , 2008, Mycological research.

[30]  Roger Jones,et al.  Scab of Wheat and Barley: A Re-emerging Disease of Devastating Impact. , 1997, Plant disease.

[31]  Jin-Rong Xu,et al.  Cryptic promoter activity in the coding region of the HMG-CoA reductase gene in Fusarium graminearum. , 2006, Fungal genetics and biology : FG & B.

[32]  W. Bushnell,et al.  Epidemiology of Fusarium head blight of small grain cereals in North America , 2003 .

[33]  B. Turgeon,et al.  Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. , 2008, Mycological research.

[34]  M. Farman Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. , 2007, FEMS microbiology letters.

[35]  U. Güldener,et al.  Conidial germination in the filamentous fungus Fusarium graminearum. , 2008, Fungal genetics and biology : FG & B.

[36]  U. Sagaram,et al.  FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. , 2006, Molecular plant-microbe interactions : MPMI.

[37]  Christina A. Cuomo,et al.  Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum , 2007, Proteomics.

[38]  Daren W Brown,et al.  Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum) , 2005, Eukaryotic Cell.

[39]  F. Delalande,et al.  Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall , 2005, Current Genetics.

[40]  H. Giese,et al.  Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin , 2006, Current Genetics.

[41]  Takayuki Aoki,et al.  Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. , 2004, Fungal genetics and biology : FG & B.

[42]  W. Shim,et al.  Functional characterization of acetylglutamate synthase and phosphoribosylamine-glycine ligase genes in Gibberella zeae , 2007, Current Genetics.

[43]  Tami R. McDonald,et al.  RNA silencing of mycotoxin production in Aspergillus and Fusarium species. , 2005, Molecular plant-microbe interactions : MPMI.

[44]  Jin-Rong Xu,et al.  A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. , 2002, Molecular plant-microbe interactions : MPMI.

[45]  S. Krasnoff,et al.  Intracellular Siderophores Are Essential for Ascomycete Sexual Development in Heterothallic Cochliobolus heterostrophus and Homothallic Gibberella zeae , 2007, Eukaryotic Cell.

[46]  Hans-Werner Mewes,et al.  Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. , 2006, Fungal genetics and biology : FG & B.

[47]  H. Giese,et al.  The PKS4 Gene of Fusarium graminearum Is Essential for Zearalenone Production , 2006, Applied and Environmental Microbiology.

[48]  F. Trail,et al.  Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae , 2006, Applied and Environmental Microbiology.

[49]  H. Giese,et al.  The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones , 2006, Molecular microbiology.

[50]  S. Kroken,et al.  Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  F. Trail,et al.  The L-Type Calcium Ion Channel Cch1 Affects Ascospore Discharge and Mycelial Growth in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum) , 2007, Eukaryotic Cell.

[52]  K. Hammond-Kosack,et al.  The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. , 2003, Molecular plant pathology.

[53]  C. Voigt,et al.  A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. , 2005, The Plant journal : for cell and molecular biology.

[54]  Kap-Hoon Han,et al.  Putative Polyketide Synthase and Laccase Genes for Biosynthesis of Aurofusarin in Gibberella zeae , 2005, Applied and Environmental Microbiology.

[55]  Karl-Heinz Kogel,et al.  Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. Arie,et al.  Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. , 2000, Fungal genetics and biology : FG & B.

[57]  S. Kroken,et al.  A novel class of gene controlling virulence in plant pathogenic ascomycete fungi , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Bai,et al.  Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests , 1996 .

[59]  R. Proctor,et al.  Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. , 1995, Molecular plant-microbe interactions : MPMI.

[60]  D. Field,et al.  Orphans as taxonomically restricted and ecologically important genes. , 2005, Microbiology.

[61]  J. Leslie,et al.  Sexual Recombination in Gibberella zeae. , 1999, Phytopathology.