Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES

[1] Overflights of the Mars Exploration Rovers (MER) by the Mars Global Surveyor (MGS) provide a unique opportunity to examine some of the basic properties of dust aerosols, starting with one of the most fundamental, the indices of refraction (m = n + ik) in the infrared. The upward-viewing geometry of the Miniature Thermal Emission Spectrometer (Mini-TES) and the combined contemporaneous observations from both MER and MGS are powerful tools. Their use allows atmospheric retrievals to directly determine n and k while offering constraints for the menagerie of other radiative transfer input parameters. We exploit these coordinated observing campaigns, along additional data sources, to carry out series of radiative transfer analyses that ultimately return the set of refractive indices. We apply the resulting m to a larger sample of Mini-TES data to both further validate our approach and retrieve several other aerosol properties, including dust optical depth, dust size, and a measure of the vertical mixing profile. We find good agreement with the empirical approach of Smith et al. (2006), in terms of both the optical depths themselves and the frequency dependence of their extinction cross section and single scattering albedo. The retrieved dust sizes vary from near 1.3 μm to 1.8 μm within the selected sample, with a precision estimated to be ≃0.1–0.2 μm. The vertical mixing profile evolves from well-mixed to appreciably confined by LS ∼ 30°. For Spirit (MER-A), there is an abrupt transition back to a more well-mixed vertical profile with the onset of regional dust activity at LS ∼ 140°. We discuss the lack of a definitive detection of water ice clouds in Mini-TES observations and the potential effects of vertical gradients in particle size distribution. Finally, as part of coordinated overflight analyses, an atmospherically corrected TES Lambert albedo map is derived and presented in Appendix A.

[1]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[2]  R. Wilson,et al.  Simulation of the Martian dust cycle with the GFDL Mars GCM , 2004 .

[3]  K. Vikram,et al.  Time-domain ultrasonic NDE of layered media: Texas A&M University, Aerospace Engineering Department, College Station, TX 77843, USA , 1992 .

[4]  Amitabha Ghosh,et al.  First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES , 2004, Science.

[5]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[6]  Donald E. Jennings,et al.  Exploration of the Solar System by Infrared Remote Sensing: Retrieval of physical parameters from measurements , 1992 .

[7]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[8]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[9]  P. Drossart,et al.  Post‐Phobos model for the altitude and size distribution of dust in the low Martian atmosphere , 1995 .

[10]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[11]  Terry Z. Martin,et al.  Thermal infrared opacity of the Mars atmosphere , 1986 .

[12]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[13]  J. Bandfield,et al.  Spectral data set factor analysis and end-member recovery: Application to analysis of Martian atmospheric particulates , 2000 .

[14]  O. Talagrand,et al.  Global structure and composition of the martian atmosphere with SPICAM on Mars express , 2005 .

[15]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[16]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[17]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. , 1993 .

[18]  S. Squyres,et al.  Coordinated Mars Exploration Rover and Mars Express OMEGA Observations over Meridiani Planum , 2004 .

[19]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[20]  R. Todd Clancy,et al.  Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: Seasonal and interannual variations , 1999 .

[21]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[22]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[23]  David P. Hinson,et al.  Temperature inversions, thermal tides, and water ice clouds in the Martian tropics , 2003 .

[24]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[25]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[26]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[27]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .

[28]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[29]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[30]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .

[31]  B. Hapke,et al.  Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols , 2005 .

[32]  J. Bandfield,et al.  Multiple emission angle surface–atmosphere separations of thermal emission spectrometer data , 2001 .

[33]  G. Hunt On the opacity of Martian dust storms derived by Viking IRTM spectral measurements , 1979 .

[34]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[35]  R. Todd Clancy,et al.  A new look at dust and clouds in the Mars atmosphere: analysis of emission-phase-function sequences from global viking IRTM observations , 1991 .

[36]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[37]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[38]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[39]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[40]  F. Palluconi,et al.  Infrared Thermal Mapping of the Martian Surface and Atmosphere: First Results , 1976, Science.

[41]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .