Ion Beam Radiation Effects in Monazite

[1]  D. Bregiroux,et al.  Plutonium and americium monazite materials: Solid state synthesis and X-ray diffraction study , 2007 .

[2]  B. Glorieux,et al.  Synthesis and sintering of a monazite–brabantite solid solution ceramic for nuclear waste storage , 2006 .

[3]  A. Benyagoub,et al.  Amorphization of β-thorium phosphate diphosphate (β-TPD) irradiated with high energy krypton ions , 2006 .

[4]  T. Advocat,et al.  Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment , 2006 .

[5]  R. Wirth,et al.  Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy , 2004 .

[6]  U. Schärer,et al.  Microstructure of 24-1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits , 2004 .

[7]  R. Wirth,et al.  Transmission electron microscope study of polyphase and discordant monazites: Site-specific specimen preparation using the focused ion beam technique , 2003 .

[8]  E. Salje,et al.  Impact of self-irradiation damage on the aqueous durability of zircon(ZrSiO4):implications for its suitability as a nuclear waste form , 2003 .

[9]  R. Romer Alpha-recoil in U–Pb geochronology: effective sample size matters , 2003 .

[10]  C. Lengauer,et al.  Annealing radiation damage and the recovery of cathodoluminescence , 2002 .

[11]  F. Poitrasson,et al.  An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10 , 2002 .

[12]  R. Wirth,et al.  An XRD, TEM and Raman study of experimentally annealed natural monazite , 2002 .

[13]  J. Krupa,et al.  Simulation of the α-annealing effect in apatitic structures by He-ion irradiation: Influence of the silicate/phosphate ratio and of the OH−/F− substitution , 2001 .

[14]  D. Davis,et al.  Preferential dissolution of 234U and radiogenic Pb from α-recoil-damaged lattice sites in zircon: implications for thermal histories and Pb isotopic fractionation in the near surface environment , 2001 .

[15]  E. Salje,et al.  Modelling the percolation-type transition in radiation damage , 2000 .

[16]  R. Ewing,et al.  A comparison of radiation effects in crystalline ABO4 -type phosphates and silicates , 2000, Mineralogical Magazine.

[17]  W. J. Weber,et al.  Radiation damage in zircon and monazite , 1998 .

[18]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[19]  J. Dran,et al.  Evidence of ionization annealing upon helium-ion irradiation of pre-damaged fluorapatite , 1997 .

[20]  R. Podor,et al.  Experimental study of Th-bearing LaPO4 (780 ℃, 200 MPa): Implications for monazite and actinide orthophosphate stability , 1997 .

[21]  R. Ewing,et al.  Electron-irradiation-induced nucleation and growth in amorphous LaPO_4, ScPO_4, and zircon , 1997 .

[22]  R. Ewing,et al.  ION-BEAM-INDUCED AMORPHIZATION OF LAPO4 AND SCPO4 , 1997 .

[23]  A. Provost,et al.  Electron microprobe dating of monazite , 1996 .

[24]  R. Ewing,et al.  Ion beam induced amorphization of monazite , 1996 .

[25]  R. Podor,et al.  Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure , 1996 .

[26]  L. Nasdala,et al.  The degree of metamictization in zircon; a Raman spectroscopic study , 1995 .

[27]  John M. Hughes,et al.  Crystal chemistry of the monazite and xenotime structures , 1995 .

[28]  Steven J. Zinkle,et al.  Radiation effects in ceramics , 1994 .

[29]  D. Cherniak Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport , 1993 .

[30]  J. Camplan,et al.  ARAMIS: An ambidextrous 2 MV accelerator for IBA and MeV implantation , 1990 .

[31]  C. Musikas,et al.  Monazite-like phases containing transuranium elements (neptunium and plutonium) , 1988 .

[32]  Rodney C. Ewing,et al.  Radioactive Waste Forms for the Future , 1988 .

[33]  K. Ouzegane,et al.  Evidence of the contrasted fission-track clock behavior of the apatites from In Ouzzal carbonatites (northwest Hoggar): The low-temperature thermal history of an Archean basement , 1988 .

[34]  R. Haire,et al.  Synthesis and characterization of crystalline phosphates of plutonium(III) and plutonium(IV) , 1984 .

[35]  B. Sales,et al.  Lanthanide orthophosphate ceramics for the disposal of actinide-contaminated nuclear wastes , 1984 .

[36]  R. Haire,et al.  Raman spectra of the transplutonium orthophosphates and trimetaphosphates , 1983 .

[37]  W. Gregor,et al.  Raman spectra of the rare earth orthophosphates , 1981 .

[38]  C. M. Gramaccioli,et al.  A uranium- and thorium-rich monazite from a South-Alpine pegmatite at Piona, Italy , 1978 .

[39]  C. Keller,et al.  Darstellung, gitterkonstanten und chemische eigenschaften einiger ternärer oxide des plutoniums, americiums und curiums vom typ MeIIIXVO4 , 1965 .

[40]  C. Bjorklund The Preparation of PuP2O7and PuPO41 , 1957 .

[41]  R. Wirth,et al.  Contrasting response of ThSiO4 and monazite to natural irradiation , 2007 .

[42]  T. Harrison,et al.  U-Th-Pb Dating of Phosphate Minerals , 2002 .

[43]  Rodney C. Ewing,et al.  Phosphates as Nuclear Waste Forms , 2002 .

[44]  R. Rebak,et al.  Scientific Basis for Nuclear Waste Management XXIII , 1999 .

[45]  W. J. Weber,et al.  Radiation effects in nuclear waste forms for high-level radioactive waste , 1995 .

[46]  L. Cartz,et al.  Heavy ion bombardment of monoclinic thsio4, tho2 and monazite , 1981 .

[47]  Werner Lutze,et al.  Scientific basis for nuclear waste management , 1979 .

[48]  M.M.R. Williams,et al.  The stopping and ranges of ions in matter , 1978 .

[49]  B. Kříbek,et al.  Characteristics of di- and trivalent metal-humic acid complexes on the basis of their molecular-weight distribution , 1977 .

[50]  R S Pease,et al.  REVIEW ARTICLES: The Displacement of Atoms in Solids by Radiation , 1955 .