Structural optimization complexity: what has Moore’s law done for us?

Rapid increases in computer processing power, memory and storage space have not eliminated computational cost and time constraints on the use of structural optimization for design. This is due to the constant increase in the required fidelity (and hence complexity) of analysis models. Anecdotal evidence seems to indicate that analysis models of acceptable accuracy have required at least six to eight hours of computer time (an overnight run) throughout the last thirty years. This poses a severe challenge for global optimization or reliability-based design. In this paper, we review how increases in computer power were utilized in structural optimization. We resolve problem complexity into components relating to complexity of analysis model, analysis procedure and optimization methodology. We explore the structural optimization problems that we can solve at present and conclude that we can solve problems with the highest possible complexity in only two of the three components of model, analysis procedure or optimization. We use examples of optimum design of composite structures to guide the discussion due to our familiarity with such problems. However, these are supplemented with other structural optimization examples to illustrate the universality of the message.

[1]  L. Ilcewicz,et al.  The use of COSTADE in developing composite commercial aircraft fuselage structures , 1994 .

[2]  Nielen Stander,et al.  MDO OF AUTOMOTIVE VEHICLE FOR CRASHWORTHINESS AND NVH USING RESPONSE SURFACE METHODS , 2002 .

[3]  Raphael T. Haftka,et al.  Automated design of composite plates for improved damage tolerance , 1988 .

[4]  Jan Bäcklund,et al.  Shape Optimization of Holes in Composite Shear Panels , 1988 .

[5]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[6]  Lucien A. Schmit,et al.  Optimum design of laminated fibre composite plates , 1977 .

[7]  Raphael T. Haftka,et al.  Anti-optimization technique for structural design under load uncertainties , 1998 .

[8]  George E. Weeks,et al.  Optimum design of composite laminates using genetic algorithms , 1992 .

[9]  M. E. Botkin,et al.  The Optimum Shape , 1986 .

[10]  M. W. Hyer,et al.  Use of curvilinear fiber format in composite structure design , 1991 .

[11]  Zelda B. Zabinsky,et al.  Optimal design of a composite structure , 1993 .

[12]  Dimitris A. Saravanos,et al.  Multiobjective shape and material optimization of composite structures including damping , 1990 .

[13]  J. C. Townsend,et al.  Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles , 2013 .

[14]  J. T. Wang,et al.  CRYOGENIC TANK STRUCTURE SIZING WITH STRUCTURAL OPTIMIZATION METHOD , 2001 .

[15]  Manohar P. Kamat,et al.  OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE PLATES WITH FREQUENCY CONSTRAINTS , 1987 .

[16]  V. B. Venkayya,et al.  Structural optimization: A review and some recommendations , 1978 .

[17]  P. Bartholomew,et al.  Structural optimisation in aircraft construction , 1987 .

[18]  Damodar R. Ambur,et al.  Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints , 1998 .

[19]  Andrew E. Lovejoy,et al.  Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing , 2003 .

[20]  Christos Kassapoglou,et al.  Simultaneous cost and weight minimization of composite-stiffened panels under compression and shear , 1997 .

[21]  Rodolphe Le Riche,et al.  Design of dimensionally stable composites by evolutionary optimization , 1998 .

[22]  Prabhat Hajela,et al.  Optimal design of laminated composites using a modified mixed integer and discrete programming algorithm , 1989 .

[23]  C. M. Mota Soares,et al.  Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells , 2000 .

[24]  L. Berke,et al.  Optimum Design of Composite Structures with Stress and Displacement Constraints , 1975 .

[25]  C. Kassapoglou,et al.  Simultaneous cost and weight minimization of postbuckled composite panels under combined compression and shear , 2001 .

[26]  Niels Olhoff,et al.  On optimum design of structures and materials , 1996 .

[27]  W.James Renton Aerospace and structures: where are we headed? , 2001 .

[28]  M. E. Botkin,et al.  SHAPE OPTIMIZATION OF THREE-DIMENSIONAL STAMPED AND SOLID AUTOMOTIVE COMPONENTS , 1986 .

[29]  Sung Kyu Ha,et al.  Design optimization of hip prosthesis of thick laminated composites by developing finite element method and sensitivity analysis , 1996 .

[30]  J. Sobieszczanski-Sobieski,et al.  Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash , 2001 .

[31]  G. N. Vanderplaats,et al.  Structural Optimization-Past, Present, and Future , 1981 .

[32]  J. C. Townsend,et al.  Very Large Scale Optimization , 2000 .

[33]  Hiroshi Furuya,et al.  Placing actuators on space structures by genetic algorithms and effectiveness indices , 1995 .

[34]  P. K. Bondyopadhyay,et al.  Moore's law governs the silicon revolution , 1998, Proc. IEEE.

[35]  Holt Ashley,et al.  On Making Things the Best-Aeronautical Uses of Optimization , 1982 .

[36]  Kyung K. Choi,et al.  Numerical method for shape optimization using meshfree method , 2002 .

[37]  Raphael T. Haftka,et al.  Comparison of preliminary designs of stiffened panels optimized using PANDA2 for reusable launch vehicle propellant tanks , 2000 .

[38]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[39]  Carlos Alberto Conceição António,et al.  Optimisation of geometrically non-linear composite structures based on load–displacement control , 1999 .

[40]  E. Hinton,et al.  Dangers inherited in shells optimized with linear assumptions , 2000 .

[41]  Mitsunori Miki,et al.  Optimum Design of Laminated Composite Plates Using Lamination Parameters , 1993 .

[42]  Raphael T. Haftka,et al.  Applications of a Quadratic Extended Interior for Structural Optimization Penalty Function , 1976 .

[43]  G. Lecina,et al.  Advances in optimal design with composite materials , 1987 .

[44]  Nam Seo Goo,et al.  Optimal design of laminated composite plates in a fuzzy environment , 1993 .

[45]  W. J. Stroud,et al.  PASCO: Structural panel analysis and sizing code, capability and analytical foundations , 1980 .

[46]  Robert Levy,et al.  Recent Developments in Structural Optimization , 1987 .

[47]  Christos C. Chamis,et al.  Telescoping composite mechanics for composite behavior simulation , 2000 .

[48]  Yoshisada Murotsu,et al.  Reliability-based optimum design of a symmetric laminated plate subject to buckling , 1997 .

[49]  Raphael T. Haftka,et al.  Deterministic and Reliability-Based Optimization of Composite Laminates for Cryogenic Environments , 2000 .

[50]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[51]  Yu. M. Pochtman,et al.  Multicriterial optimization of hybrid composite cylindrical shells under a stochastic combined loading , 1991 .

[52]  Fred W. Williams,et al.  Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates , 1992 .

[53]  Harold Thimbleby,et al.  Computerised Parkinson's Law , 1993 .

[54]  D. Shin,et al.  Minimum-weight design of laminated composite plates for postbucklingperformance , 1991 .

[55]  L. A. Schmit,et al.  A new structural analysis/synthesis capability - ACCESS , 1975 .

[56]  Frithiof I Niordson Early numerical computations in engineering , 2001 .

[57]  Layne T. Watson,et al.  Improved Genetic Algorithm for the Design of Stiffened Composite Panels , 1994 .

[58]  Raphael T. Haftka,et al.  Preliminary design of composite wings for buckling, strength and displacement constraints , 1979 .

[59]  Iulian Grindeanu,et al.  CAD-Based Shape Optimization Using a Meshfree Method , 2002, Concurr. Eng. Res. Appl..

[60]  Yoshisada Murotsu,et al.  Application of lamination parameters to reliability-based stiffness design of composites , 1993 .

[61]  L. Yang,et al.  Optimum design based on reliability for a composite structural system , 1990 .

[62]  Nigel R. Ball,et al.  Design of laminate composite layups using genetic algorithms , 2005, Engineering with Computers.

[63]  J. Sobieszczanski-Sobieski Structural optimization: Challenges and opportunities , 1983 .

[64]  Hsuan-Teh Hu,et al.  Optimization for buckling resistance of fiber-composite laminate shells with and without cutouts , 1990 .

[65]  Mark E. Botkin,et al.  Optimum Shape: Automated Structural Design , 1986 .

[66]  Raphael T. Haftka,et al.  Stiffness tailoring for improved compressive strength of composite plates with holes , 1988 .

[67]  S. B. Biggers,et al.  Design Optimization of a Laminated Composite Femoral Component for Hip Joint Arthroplasty , 1998 .

[68]  Ramana V. Grandhi,et al.  Structural optimization with frequency constraints - A review , 1992 .

[69]  Raphael T. Haftka,et al.  Preliminary design optimization of stiffened panels using approximate analysis models , 2003 .

[70]  Kyung K. Choi,et al.  Die shape design optimization of sheet metal stamping process using meshfree method , 2001 .

[71]  C. Northcote Parkinson,et al.  Parkinson's Law or the Pursuit of Progress , 1958 .

[72]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[73]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[74]  W. J. Stroud,et al.  Minimum-Mass Design of Filamentary Composite Panels Under Combined Loads: Design Procedure Based on a Rigorous Buckling Analysis. , 1977 .

[75]  R. Haftka,et al.  Improved genetic algorithm for minimum thickness composite laminate design , 1995 .

[76]  G. N. Vanderplaats,et al.  Thirty years of modern structural optimization , 1993 .

[77]  W. J. Stroud,et al.  Minimum-Mass Design of Filamentary Composite Panels under Combined Loads: Design Procedure Based on Simplified Buckling Equations. , 1976 .

[78]  Velaja B. Hammer,et al.  Optimization of fibrous laminates undergoing progressive damage , 2000 .

[79]  Robert Ley,et al.  Optimal sizing of a composite sandwich fuselage component , 2001 .

[80]  David Bushnell,et al.  PANDA2: Program for Minimum Weight Design of Stiffened, Composite, Locally Buckled Panels , 1987 .

[81]  James H. Starnes,et al.  MINIMUM-WEIGHT DESIGN OF COMPRESSIVELY LOADED STIFFENED PANELS FOR POSTBUCKLING RESPONSE , 1995 .

[82]  Y. M. Xie,et al.  Shape optimization of interior cutouts in composite panels , 1996 .

[83]  Jan A. Snyman,et al.  Modified Trajectory Method for Practical Global Optimization Problems , 1996 .

[84]  Sarp Adali,et al.  Multiobjective Design of Laminated Cylindrical Shells for Maximum Pressure and Buckling Load , 1995 .

[85]  M. E. Botkin,et al.  Structural shape optimization with geometric description and adaptive mesh refinement , 1985 .

[86]  J. H. Starnes,et al.  Applications of a quadratic extended interior penalty function for structural optimization , 1975 .