The Analytic and Formal Normal Form for the Nilpotent Singularity

Abstract We study orbital normal forms for analytic planar vector fields with nilpotent singularity. We show that the Takens normal form is analytic. In the case of generalized cusp we present the complete formal orbital normal form; it contains functional moduli. We interprete the coefficients of these moduli in terms of the hidden holonomy group.

[1]  R. Moussu,et al.  Symétrie et forme normale des centres et foyers dégénérés , 1982, Ergodic Theory and Dynamical Systems.

[2]  R. I. Bogdanov Local Orbitals of Normal Forms of Vector Fields on a Plane , 1985 .

[3]  Frank Loray,et al.  Réduction formelle des singularités cuspidales de champs de vecteurs analytiques , 1999 .

[4]  Frank Loray Feuilletages holomorphes à holonomie résoluble , 1994 .

[5]  Ewa Stróżyna,et al.  The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node , 2002 .

[6]  Harold Levine,et al.  Singularities of differentiable mappings , 1971 .

[7]  R. Moussu,et al.  Holonomie et intégrales premières , 1980 .

[8]  N. N. Brushlinskaya Finiteness theorem for families of vector fields in the neighborhood of a Poincaré-type singularity , 1971 .

[9]  Frank Loray,et al.  Classification de certains feuilletages associés à un cusp , 1994 .

[10]  R. Moussu,et al.  Groupes d’automorphismes de $({\mathbb {C}},0)$ et équations différentielles $ydy+\cdots =0$ , 1988 .

[11]  Jan A. Sanders,et al.  Further reduction of the Takens-Bogdanov normal form , 1992 .

[12]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[13]  R. I. Bogdanov Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .

[14]  Y. Il'yashenko,et al.  Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane , 1993 .

[15]  R. Moussu,et al.  Réversibilité et classification des centres nilpotents , 1994 .

[16]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .