Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

[1]  M. Laso,et al.  The structure of random packings of freely jointed chains of tangent hard spheres. , 2009, The Journal of chemical physics.

[2]  M. Kröger,et al.  Random packing of model polymers: local structure, topological hindrance and universal scaling , 2009 .

[3]  M. Laso,et al.  Structure, dimensions, and entanglement statistics of long linear polyethylene chains. , 2009, The journal of physical chemistry. B.

[4]  Kurt Kremer,et al.  Dynamics of Polystyrene Melts through Hierarchical Multiscale Simulations , 2009 .

[5]  M. Kröger,et al.  Universal scaling, entanglements, and knots of model chain molecules. , 2008, Physical review letters.

[6]  S. Shanbhag,et al.  On the relationship between two popular lattice models for polymer melts. , 2008, The Journal of chemical physics.

[7]  B. Edwards,et al.  Rheological and entanglement characteristics of linear-chain polyethylene liquids in planar Couette and planar elongational flows , 2008 .

[8]  M. Laso,et al.  Dense and nearly jammed random packings of freely jointed chains of tangent hard spheres. , 2008, Physical review letters.

[9]  M. Kröger,et al.  Formation of double helical and filamentous structures in models of physical and chemical gels. , 2007, Soft matter.

[10]  J. Schieber,et al.  Comprehensive comparisons with nonlinear flow data of a consistently unconstrained Brownian slip-link model , 2007 .

[11]  Ralf Everaers,et al.  Viscoelasticity and primitive path analysis of entangled polymer liquids: from F-actin to polyethylene. , 2007, The Journal of chemical physics.

[12]  G. Grest,et al.  Entanglements of an End-Grafted Polymer Brush in a Polymeric Matrix , 2007 .

[13]  H. C. Ottinger,et al.  From atomistic simulation to the dynamics, structure and helical network formation of dendronized polymers: the Janus chain model. , 2007, The Journal of chemical physics.

[14]  David Curcó,et al.  Coarse‐graining: A procedure to generate equilibrated and relaxed models of amorphous polymers , 2007, J. Comput. Chem..

[15]  S. K. Sukumaran,et al.  Linear viscoelasticity from molecular dynamics simulation of entangled polymers , 2007 .

[16]  M. Kröger,et al.  Primitive Path Networks Generated by Annealing and Geometrical Methods: Insights into Differences , 2007 .

[17]  R. Larson,et al.  Advances in modeling of polymer melt rheology , 2007 .

[18]  C. Alemán,et al.  Coarse-grained simulations of amorphous and melted polyethylene , 2007 .

[19]  D. Morse,et al.  Simulations of dynamics and viscoelasticity in highly entangled solutions of semiflexible rods. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Krzysztof Moorthi,et al.  Coarse Grained End Bridging Monte Carlo Simulations of Poly(ethylene terephthalate) Melt , 2007 .

[21]  A. Terzis,et al.  Helix formation in linear achiral dendronized polymers: a computer simulation study. , 2006, The Journal of chemical physics.

[22]  V. Mavrantzas,et al.  Primitive Path Identification and Entanglement Statistics in Polymer Melts: Results from Direct Topological Analysis on Atomistic Polyethylene Models , 2006 .

[23]  D. Theodorou,et al.  From atomistic simulations to slip-link models of entangled polymer melts: Hierarchical strategies for the prediction of rheological properties , 2006 .

[24]  Doros N. Theodorou,et al.  Topological Analysis of Linear Polymer Melts: A Statistical Approach , 2006 .

[25]  R. Larson,et al.  Identification of Topological Constraints in Entangled Polymer Melts Using the Bond-Fluctuation Model , 2006 .

[26]  Martin Kröger,et al.  Models for Polymeric and Anisotropic Liquids , 2005 .

[27]  Kurt Kremer,et al.  Bisphenol A Polycarbonate: Entanglement Analysis from Coarse-Grained MD Simulations , 2005 .

[28]  M. Robbins,et al.  Effect of equilibration on primitive path analyses of entangled polymers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Martin Kröger,et al.  Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems , 2005, Comput. Phys. Commun..

[30]  R. Larson,et al.  Primitive Path Identification and Statistics in Molecular Dynamics Simulations of Entangled Polymer Melts , 2005 .

[31]  Kurt Kremer,et al.  Identifying the primitive path mesh in entangled polymer liquids , 2004 .

[32]  Eric J. Rawdon,et al.  Role of flexibility in entanglement. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[34]  W. Richtering Polymer Physics , 2003 .

[35]  Steven J. Plimpton,et al.  Equilibration of long chain polymer melts in computer simulations , 2003, cond-mat/0306026.

[36]  B. D. Todd,et al.  Nonlinear shear and elongational rheology of model polymer melts by non-equilibrium molecular dynamics , 2003 .

[37]  J. Schieber Fluctuations in entanglements of polymer liquids , 2003 .

[38]  Nikos Ch. Karayiannis,et al.  Atomistic Monte Carlo simulation of strictly monodisperse long polyethylene melts through a generalized chain bridging algorithm , 2002 .

[39]  D. Theodorou,et al.  A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. , 2002, Physical review letters.

[40]  H. D. Cochran,et al.  A molecular dynamics study of a short-chain polyethylene melt. I. Steady-state shear , 2000 .

[41]  S. Hess,et al.  Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics , 2000, Physical review letters.

[42]  M. Doi,et al.  Molecular dynamics simulation of entangled polymers in shear flow , 2000 .

[43]  S. Milner,et al.  Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights , 1999 .

[44]  Kurt Kremer,et al.  Reply to the Comment on: “What is the Entanglement Length in a Polymer Melt ?“ , 2000 .

[45]  Rony Granek,et al.  From Semi-Flexible Polymers to Membranes: Anomalous Diffusion and Reptation , 1997 .

[46]  M. Kröger,et al.  Polymer Melts under Uniaxial Elongational Flow: Stress−Optical Behavior from Experiments and Nonequilibrium Molecular Dynamics Computer Simulations , 1997 .

[47]  G. Fredrickson The theory of polymer dynamics , 1996 .

[48]  R Ezzell,et al.  F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. , 1996, Biophysical journal.

[49]  Doros N. Theodorou,et al.  Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts , 1995 .

[50]  M. Kröger NEMD-Computersimulation zur Rheologie von Polymerschmelzen / NEMD Computer Simulation of Polymer Melt Rheology , 1995 .

[51]  T. Witten,et al.  Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties , 1994 .

[52]  Martin Kröger,et al.  Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics , 1993 .

[53]  J. H. Weiner,et al.  Stress relaxation in a polymer melt of freely‐rotating chains , 1992 .

[54]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[55]  Michael Rubinstein,et al.  Statistics of the entanglement of polymers: Concentration effects , 1985 .

[56]  W. MacKnight Macromolecules. , 1976, Science.

[57]  S. Edwards,et al.  The theory of rubber elasticity , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[58]  A. Schlüter A covalent chemistry approach to giant macromolecules with cylindrical shape and an engineerable interior and surface , 2005 .

[59]  Martin Kröger,et al.  Projection from an atomistic chain contour to its primitive path , 2002 .