Modified Optimal Foraging Algorithm for Parameters Optimization of Support Vector Machine

Support Vector Machine (SVM) is one of the widely used algorithms for classification and regression problems. In SVM, penalty parameter C and kernel parameters can have a significant impact on the complexity and performance of SVM. In this paper, an Optimal Foraging Algorithm (OFA) is proposed to optimize the main parameters of SVM and reduce the classification error. Six public benchmark datasets were employed for evaluating the proposed (OFA-SVM). Also, five well-known and recently optimization algorithms are used for evaluation. These algorithms are Artificial Bee Colony (ABC), Genetic Algorithm (GA), Chicken Swarm Optimization (CSO), Particle Swarm Optimization (PSO) and Bat Algorithm (BA). The experimental results show that the proposed OFA-SVM obtained superior results. Also, the results demonstrate the capability of the proposed OFA-SVM to find optimal values of SVM parameters.

[1]  Graham H. Pyke,et al.  Optimal Foraging: A Selective Review of Theory and Tests , 1977, The Quarterly Review of Biology.

[2]  Zhiyong Luo,et al.  SVM parameters tuning with quantum particles swarm optimization , 2008, 2008 IEEE Conference on Cybernetics and Intelligent Systems.

[3]  Jianhua Wang,et al.  Optimizing parameters of support vector machines using team-search-based particle swarm optimization , 2015 .

[4]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[5]  Guang-Yu Zhu,et al.  Optimal foraging algorithm for global optimization , 2017, Appl. Soft Comput..

[6]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[7]  Aboul Ella Hassanien,et al.  Parameter Optimization of Support Vector Machine Using Dragonfly Algorithm , 2017, AISI.

[8]  Aboul Ella Hassanien,et al.  Interphase cells removal from metaphase chromosome images based on meta-heuristic Grey Wolf Optimizer , 2015, 2015 11th International Computer Engineering Conference (ICENCO).

[9]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[10]  Milan Tuba,et al.  Adjusted bat algorithm for tuning of support vector machine parameters , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[11]  Aboul Ella Hassanien,et al.  Particle Swarm Optimization and K-Means Algorithm for Chromosomes Extraction from Metaphase Images , 2017, AISI.

[12]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[13]  Aboul Ella Hassanien,et al.  Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images , 2017, Applied Intelligence.

[14]  Shereen A. Taie,et al.  Title CSO-based algorithm with support vector machine for brain tumor's disease diagnosis , 2017, 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops).

[15]  Aboul Ella Hassanien,et al.  Bio-inspired Swarm Techniques for Thermogram Breast Cancer Detection , 2016 .

[16]  J. T. Erichsen,et al.  Optimal prey selection in the great tit (Parus major) , 1977, Animal Behaviour.

[17]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Evolutionary tuning of SVM parameter values in multiclass problems , 2008, Neurocomputing.

[18]  Hongnian Yu,et al.  Parameters optimization of classifier and feature selection based on improved artificial bee colony algorithm , 2016, 2016 International Conference on Advanced Mechatronic Systems (ICAMechS).

[19]  Aboul Ella Hassanien,et al.  Feature selection via a novel chaotic crow search algorithm , 2017, Neural Computing and Applications.