Running a Quantum Circuit at the Speed of Data

We analyze circuits for kernels from popular quantum computing applications, characterizing the hardware resources necessary to take ancilla preparation off the critical path. The result is a chip entirely dominated by ancilla generation circuits. To address this issue, we introduce optimized ancilla factories and analyze theirstructure and physical layout for ion trap technology. We introduce a new quantum computing architecture with highly concentrated data-only regions surrounded by shared ancilla factories. The results are a reduced dependence on costly teleportation, more efficient distribution of generated ancillae and more than five times speedup over previous proposals.

[1]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[3]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[4]  Margaret Martonosi,et al.  Tailoring quantum architectures to implementation style: a quantum computer for mobile and persistent qubits , 2007, ISCA '07.

[5]  Doug Burger,et al.  Evaluating Future Microprocessors: the SimpleScalar Tool Set , 1996 .

[6]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[7]  Andrew M. Steane,et al.  How to build a 300 bit, 1 Giga-operation quantum computer , 2004, Quantum Inf. Comput..

[8]  Andrew W. Cross,et al.  A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).

[9]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  Andrew Steane How to build a 300 bit, 1 Gop quantum computer , 2004 .

[11]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[12]  Thomas G. Draper Addition on a Quantum Computer , 2000, quant-ph/0008033.

[13]  John Kubiatowicz,et al.  Interconnection Networks for Scalable Quantum Computers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[14]  Frederic T. Chong,et al.  Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[15]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[18]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[20]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[22]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[23]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[24]  Austin G. Fowler Towards Large-Scale Quantum Computation , 2005 .