Radiometer design analysis based upon measurement uncertainty

[1] This paper introduces a method for predicting the performance of a radiometer design based on calculating the measurement uncertainty. The variety in radiometer designs and the demand for improved radiometric measurements justify the need for a more general and comprehensive method to assess system performance. Radiometric resolution, or sensitivity, is a figure of merit that has been commonly used to characterize the performance of a radiometer. However, when evaluating the performance of a calibration design for a radiometer, the use of radiometric resolution has limited application. These limitations are overcome by considering instead the measurement uncertainty. A method for calculating measurement uncertainty for a generic radiometer design including its calibration algorithm is presented. The result is a generalized technique by which system calibration architectures and design parameters can be studied to optimize instrument performance for given requirements and constraints. Example applications demonstrate the utility of using measurement uncertainty as a figure of merit.

[1]  Niels Skou,et al.  Microwave Radiometer Systems: Design and Analysis , 1989 .

[2]  Philip W. Rosenkranz,et al.  NPOESS Aircraft Sounder Testbed-Microwave (NAST-M): instrument description and initial flight results , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Andreas Magun,et al.  Statistical gain fluctuations of microwave amplifiers measured with a Dicke-Radiometer , 1971 .

[4]  Paul Racette,et al.  A calibration experiment using the millimeter-wave imaging radiometer at the UK Meteorological Office calibration facility , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[5]  Edward J. Wollack High‐electron‐mobility‐transistor gain stability and its design implications for wide band millimeter wave receivers , 1995 .

[6]  Ignasi Corbella,et al.  On-board accurate calibration of dual-channel radiometers using internal and external references , 2002 .

[7]  Roger Frost,et al.  International Organization for Standardization (ISO) , 2004 .

[8]  Conglong Zhao,et al.  Computer demodulation technique for a dual-channel microwave radiometer , 1986 .

[9]  Yong Han,et al.  Analysis and improvement of tipping calibration for ground-based microwave radiometers , 2000, IEEE Trans. Geosci. Remote. Sens..

[10]  R. Dicke The measurement of thermal radiation at microwave frequencies. , 1946, The Review of scientific instruments.

[11]  G. Poe,et al.  Sensitivity of the Total Power Radiometer with Periodic Absolute Calibration , 1981 .

[12]  Robert Buderi,et al.  The invention that changed the world : how a small group of radar pioneers won the Second World War and launched a technological revolution , 1997 .

[13]  S. J. Goldstein A Comparison of Two Radiometer Circuits , 1955, Proceedings of the IRE.

[14]  Jeffrey Piepmeier,et al.  Calibration of passive microwave polarimeters that use hybrid coupler-based correlators , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Raju V. Datla,et al.  Recommended Practice: Symbols, Terms, Units and Uncertainty Analysis for Radiometric Sensor Calibration | NIST , 1998 .

[16]  David M. Le Vine,et al.  The sensitivity of synthetic aperture radiometers for remote sensing applications from space , 1990 .

[17]  C. T. Stelzried,et al.  Microwave Thermal Noise Standards , 1968 .

[18]  Paul Racette,et al.  Experimental Investigations of Non-Stationary Properties In Radiometer Receivers Using Measurements of Multiple Calibration References , 2002 .

[19]  Jane Radatz,et al.  The IEEE Standard Dictionary of Electrical and Electronics Terms , 1997 .

[20]  Tim J. Hewison,et al.  Measuring the Accuracy of MARSS—An Airborne Microwave Radiometer , 2001 .

[21]  Edward J. Kim,et al.  Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry , 2005 .

[22]  F. Thomsen On the Resolution of Dicke-Type Radiometers , 1984 .

[23]  Christopher Ruf,et al.  Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference , 2000, IEEE Trans. Geosci. Remote. Sens..

[24]  J. Randa Uncertainties in NIST noises-temperature measurements , 1998 .

[25]  D. Wait The sensitivity of the Dicke radiometer , 1967 .

[26]  Paul Racette,et al.  Passive millimeter- and submillimeter-wave imaging for atmospheric research , 1998, Defense, Security, and Sensing.

[27]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[28]  Richard K. Moore,et al.  Microwave Remote Sensing - Active and Passive - Volume I - Microwave Remote Sensing Fundamentals and Radiometry , 1981 .

[29]  G. E. Peckham An optimum calibration procedure for radiometers , 1989 .

[30]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  W. L. Root,et al.  The Sensitivity of Radiometric Measurements , 1963 .

[32]  Paul Racette,et al.  A multi-channel microwave radiometer uses reference averaging for calibration: precision approaches that of a total power radiometer , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[33]  Anton F. P. van Putten Electronic Measurement Systems: Theory and Practice , 1988 .

[34]  Alan Tanner,et al.  Design and performance of a high‐stability water vapor radiometer , 2003 .

[35]  C.K.S. Miller,et al.  Noise standards, measurements, and receiver noise definitions , 1967 .

[36]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[37]  Ian J Craddock,et al.  Progress in Electromagnetics Research Symposium (PIERS) , 2002 .

[38]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[39]  Tim J. Hewison,et al.  Radiometric characterization of AMSU-B , 1995 .

[40]  Paul Racette,et al.  Ice Cloud Retrievals and Analysis with the Compact Scanning Submillimeter Imaging Radiometer and the Cloud Radar System during CRYSTAL FACE , 2005 .

[41]  Paul Racette,et al.  An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies , 1996 .

[42]  M. E. Tiuri,et al.  Radio Astronomy Receivers , 1964, IEEE Transactions on Military Electronics.

[43]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[44]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[45]  David Morris Jackson Calibration of millimeter-wave radiometers with application to clear-air remote sensing of the atmosphere , 1999 .

[46]  James C. Bremer Improvement of Scanning Radiometer Performance by Digital Reference Averaging , 1979, IEEE Transactions on Instrumentation and Measurement.

[47]  W. Root,et al.  An introduction to the theory of random signals and noise , 1958 .

[48]  Christopher S. Ruf,et al.  TOPEX/Poseidon Microwave Radiometer (TMR). I. Instrument description and antenna temperature calibration , 1995, IEEE Trans. Geosci. Remote. Sens..

[49]  K. F. Evans,et al.  CoSSIR: A New Instrument for Exploring the Utility of Submillimeter-wave Radiometry for Earth Observation , 2004 .

[50]  J. Hach,et al.  A Very Sensitive Airborne Microwave Radiometer Using Two Reference Temperatures , 1968 .

[51]  Anthony B. Davis,et al.  Scale Invariance of Liquid Water Distributions in Marine Stratocumulus. Part I: Spectral Properties and Stationarity Issues , 1996 .

[52]  Paul Racette,et al.  Comparative analysis of radiometer systems using non-stationary processes , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[53]  B. H. Smith,et al.  Noise spectrum characteristics of low-noise microwave tubes and solid state devices , 1966 .

[54]  Paul Racette,et al.  The airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[55]  Frank Wentz,et al.  Post-launch calibration of the TRMM microwave imager , 2001, IEEE Trans. Geosci. Remote. Sens..