Zero-One Laws for Modal Logic

Abstract We show that a 0–1 law holds for propositional modal logic, both for structure validity and frame validity. In the case of structure validity, the result follows easily from the well-known 0–1 law for first-order logic. However, our proof gives considerably more information. It leads to an elegant axiomatization for almost-sure structure validity and to sharper complexity bounds. Since frame validity can be reduced to a Π 1 1 formula, the 0–1 law for frame validity helps delineate when 0–1 laws exist for second-order logics.

[1]  Max J. Cresswell,et al.  A companion to modal logic , 1984 .

[2]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[3]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[4]  Joseph Y. Halpern,et al.  Asymptomatic conditional probabilities for first-order logic , 1992, STOC '92.

[5]  Etienne Grandjean,et al.  Complexity of the First-Order Theory of Almost All Finite Structures , 1983, Inf. Control..

[6]  Georg Gottlob NP trees and Carnap's modal logic , 1995, JACM.

[7]  Phokion G. Kolaitis,et al.  0-1 laws for infinitary logics , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[8]  Joseph Y. Halpern,et al.  A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..

[9]  Yu. V. Glebskii,et al.  Range and degree of realizability of formulas in the restricted predicate calculus , 1969 .

[10]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[11]  Alfred V. Aho,et al.  Universality of data retrieval languages , 1979, POPL.

[12]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[13]  Phokion G. Kolaitis,et al.  The decision problem for the probabilities of higher-order properties , 1987, STOC.

[14]  B. Dreben,et al.  The decision problem: Solvable classes of quantificational formulas , 1979 .

[15]  Joseph Y. Halpern USING REASONING ABOUT KNOWLEDGE TO ANALYZE DISTRIBUTED SYSTEMS , 1987 .

[16]  L. Pacholski,et al.  The 0-1 law fails for the class of existential second order Godel sentences with equality , 1989, 30th Annual Symposium on Foundations of Computer Science.

[17]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[18]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[19]  D. Makinson On Some Completeness Theorems in Modal Logic , 1966 .

[20]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[21]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[22]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[23]  Phokion G. Kolaitis,et al.  0-1 Laws and Decision Problems for Fragments of Second-Order Logic , 1990, Inf. Comput..

[24]  Ronald Fagin,et al.  Monadic generalized spectra , 1975, Math. Log. Q..

[25]  K. Compton A Logical Approach to Asymptotic Combinatorics I. First Order Properties , 1987 .

[26]  B. Rothschild,et al.  Asymptotic enumeration of partial orders on a finite set , 1975 .

[27]  K. Compton Laws in Logic and Combinatorics , 1989 .

[28]  Ivan M. Havel Automata theory motivated by problem solving , 1974, SIGA.

[29]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[30]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .