Inverse Continuous Numerical Fourier Transform for Transient Analysis of Electromagnetic Phenomena

This paper presents a novel numerical algorithm for solving the inverse Fourier transform of an arbitrary transient function. The inverse Fourier integral is solved by linearizing only the mildly oscillatory solution function over a set of frequency samples in the frequency domain, and then using an analytical integration to obtain a continuous transient function in the time domain. The proposed algorithm, based on the finite element technique, in combination with the previously developed algorithm for continuous numerical Fourier transform represents a powerful tool for any frequency-domain-based transient analysis.

[1]  E. K. Miller,et al.  Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions , 1989 .

[2]  F. P. Dawalibi,et al.  Analysis of electrical interference from power lines to gas pipelines part I , 1989 .

[3]  Dino Lovrić,et al.  On continuous numerical Fourier transform for transient analysis of lightning current related phenomena , 2015 .

[4]  S. Falco,et al.  Some integrals involving Heidler’s lightning return stroke current expression , 2005 .

[5]  Petar Sarajcev,et al.  Accuracy of the Inverse Fast Fourier Transform algorithm in grounding grid transient analysis , 2010, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[6]  J. Zou,et al.  An interpolation model to accelerate the frequency-domain response calculation of grounding systems using the method of moments , 2006, IEEE Transactions on Power Delivery.

[7]  R. Pizer,et al.  Moment Methods in Electromagnetics: Techniques and Applications , 1984 .

[8]  M. Uman,et al.  Lightning return stroke current models with specified channel‐base current: A review and comparison , 1990 .

[9]  Vernon Cooray Non conventional lightning protection systems , 2010, 2010 30th International Conference on Lightning Protection (ICLP).

[10]  Vesna Javor New Functions for Representing IEC 62305 Standard and Other Typical Lightning Stroke Currents , 2012 .

[11]  Jacqueline Grennon , 2nd Ed. , 2002, The Journal of nervous and mental disease.

[12]  Peter P. Silvester,et al.  Finite elements for electrical engineers: Curvilinear, vectorial and unbounded elements , 1996 .

[13]  Slavko Vujević,et al.  Exponential approximation of the Heidler function for the reproduction of lightning current waveshapes , 2010 .

[14]  R. H. Golde,et al.  The lightning discharge , 1941 .

[15]  Leonid Grcev,et al.  An electromagnetic model for transients in grounding systems , 1990 .

[16]  Gerhard Diendorfer,et al.  An improved return stroke model with specified channel-base current , 1990 .

[17]  L. Grcev,et al.  On HF Circuit Models of Horizontal Grounding Electrodes , 2009, IEEE Transactions on Electromagnetic Compatibility.

[18]  K. Berger Parameters of lightning flashes , 1975 .

[19]  Slavko Vujević,et al.  Time-harmonic current distribution on conductor grid in horizontally stratified multilayer medium , 2011 .

[20]  Fridolin Heidler,et al.  A Class of Analytical Functions to Study the Lightning Effects Associated With the Current Front , 2002 .

[21]  Slavko Vujević,et al.  On the estimation of Heidler function parameters for reproduction of various standardized and recorded lightning current waveshapes , 2013 .