Twenty Years Later: A Comprehensive Review of the X Chromosome Use in Forensic Genetics

The unique structure of the X chromosome shaped by evolution has led to the present gender-specific genetic differences, which are not shared by its counterpart, the Y chromosome, and neither by the autosomes. In males, recombination between the X and Y chromosomes is limited to the pseudoautosomal regions, PAR1 and PAR2; therefore, in males, the X chromosome is (almost) entirely transmitted to female offspring. On the other hand, the X chromosome is present in females with two copies that recombine along the whole chromosome during female meiosis and that is transmitted to both female and male descendants. These transmission characteristics, besides the obvious clinical impact (sex chromosome aneuploidies are extremely frequent), make the X chromosome an irreplaceable genetic tool for population genetic-based studies as well as for kinship and forensic investigations. In the early 2000s, the number of publications using X-chromosomal polymorphisms in forensic and population genetic applications increased steadily. However, nearly 20 years later, we observe a conspicuous decrease in the rate of these publications. In light of this observation, the main aim of this article is to provide a comprehensive review of the advances and applications of X-chromosomal markers in population and forensic genetics over the last two decades. The foremost relevant topics are addressed as: (i) developments concerning the number and types of markers available, with special emphasis on short tandem repeat (STR) polymorphisms (STR nomenclatures and practical concerns); (ii) overview of worldwide population (frequency) data; (iii) the use of X-chromosomal markers in (complex) kinship testing and the forensic statistical evaluation of evidence; (iv) segregation and mutation studies; and (v) current weaknesses and future prospects.

[1]  Kenji Fukui,et al.  Genetic polymorphism analyses of three novel X chromosomal short tandem repeat loci in the Xp22.3 region. , 2020, Legal medicine.

[2]  L. Zha,et al.  Genetic characterization of 19 X-STRs in Sierra Leone population from Freetown , 2020, International Journal of Legal Medicine.

[3]  C. Robino,et al.  Analysis of recombination and mutation events for 12 X-Chr STR loci: A collaborative family study of the Italian Speaking Working Group Ge.F.I , 2019 .

[4]  N. Pinto,et al.  Mutation in Y STRs: Repeat motif gains vs. losses , 2019 .

[5]  G. Burgos,et al.  An update of STR mutation rates from paternity tests analyzed in a 14 year period (2005–2018) at IdentiGEN lab, Universidad de Antioquia, Colombia , 2019 .

[6]  Shan-hui Sun,et al.  Application of CPI cutoff value based on parentage testing of duos and trios typed by four autosomal kits , 2019, PloS one.

[7]  N. Pinto,et al.  X-chromosome data for 12 STRs: Towards an Argentinian database of forensic haplotype frequencies. , 2019, Forensic science international. Genetics.

[8]  R. Tao,et al.  Development and validation of a multiplex insertion/deletion marker panel, SifaInDel 45plex system. , 2019, Forensic science international. Genetics.

[9]  Y. Aoki,et al.  Genetic polymorphism of 27 X-chromosomal short tandem repeats in an Egyptian population. , 2019, Legal medicine.

[10]  H. Hwa,et al.  A single nucleotide polymorphism panel for individual identification and ancestry assignment in Caucasians and four East and Southeast Asian populations using a machine learning classifier , 2019, Forensic Science, Medicine and Pathology.

[11]  David Ballard,et al.  Global patterns of STR sequence variation: Sequencing the CEPH human genome diversity panel for 58 forensic STRs using the Illumina ForenSeq DNA Signature Prep Kit , 2018, Electrophoresis.

[12]  António Amorim,et al.  Big data in forensic genetics. , 2018, Forensic science international. Genetics.

[13]  Yiping Hou,et al.  Multiplex PCR for 19 X-chromosomal STRs in Chinese population , 2017 .

[14]  Chengtao Li,et al.  Parallel sequencing of 60 X-chromosome genetic markers including STRs, SNPs and InDels , 2017 .

[15]  S. Matveevsky,et al.  Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis , 2017, Genes.

[16]  A. Brehm,et al.  Genetic characterization of Guinea-Bissau using a 12 X-chromosomal STR system: Inferences from a multiethnic population. , 2017, Forensic science international. Genetics.

[17]  T. Egeland,et al.  DNA Commission of the International Society for Forensic Genetics (ISFG): Guidelines on the use of X-STRs in kinship analysis. , 2017, Forensic science international. Genetics.

[18]  Jocelyne Bruand,et al.  Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories. , 2017, Forensic science international. Genetics.

[19]  Hancheng Zheng,et al.  Developmental validation of a custom panel including 273 SNPs for forensic application using Ion Torrent PGM. , 2017, Forensic science international. Genetics.

[20]  Michael Krawczak,et al.  Genetic mapping of 15 human X chromosomal forensic short tandem repeat (STR) loci by means of multi-core parallelization. , 2016, Forensic science international. Genetics.

[21]  L. Gusmão,et al.  Types of Genomes, Sequences and Genetic Markers (Repeats, SNPs, Indels, Haplotypes) , 2016 .

[22]  Y. Ye,et al.  Erratum: Detecting a hierarchical genetic population structure via Multi-InDel markers on the X chromosome , 2016, Scientific Reports.

[23]  Y. Ye,et al.  Detecting a hierarchical genetic population structure via Multi-InDel markers on the X chromosome , 2016, Scientific Reports.

[24]  R. J. Herrera,et al.  Development of a new highly efficient 17 X‐STR multiplex for forensic purposes , 2016, Electrophoresis.

[25]  Weibo Liang,et al.  Mutational analysis of 33 autosomal short tandem repeat (STR) loci in southwest Chinese Han population based on trio parentage testing. , 2016, Forensic science international. Genetics.

[26]  J. Edelmann,et al.  X-chromosomal 21-indel marker panel in German and Baltic populations , 2016, International Journal of Legal Medicine.

[27]  Yiping Hou,et al.  Screening of Multi-InDel markers on X-chromosome for forensic purpose , 2015 .

[28]  Toni M. Diegoli Forensic typing of short tandem repeat markers on the X and Y chromosomes. , 2015, Forensic science international. Genetics.

[29]  Peter M Vallone,et al.  STR allele sequence variation: Current knowledge and future issues. , 2015, Forensic science international. Genetics.

[30]  T. Egeland,et al.  A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations , 2015, International Journal of Legal Medicine.

[31]  Daniel Kling,et al.  FamLinkX - implementation of a general model for likelihood computations for X-chromosomal marker data. , 2015, Forensic science international. Genetics.

[32]  J. Edelmann,et al.  Genetic polymorphisms of twelve X-STRs of the investigator Argus X-12 kit and additional six X-STR centromere region loci in an Egyptian population sample. , 2014, Forensic science international. Genetics.

[33]  H. Kaessmann,et al.  Origins and functional evolution of Y chromosomes across mammals , 2014, Nature.

[34]  Thore Egeland,et al.  A general approach to power calculation for relationship testing. , 2014, Forensic science international. Genetics.

[35]  Hu Zhao,et al.  Allele and Haplotype Diversity of 26 X-STR Loci in Four Nationality Populations from China , 2013, PloS one.

[36]  T. Egeland,et al.  Paternity exclusion power: comparative behaviour of autosomal and X-chromosomal markers in standard and deficient cases with inbreeding. , 2013, Forensic science international. Genetics.

[37]  P. Schneider,et al.  A 21 marker insertion deletion polymorphism panel to study biogeographic ancestry. , 2013, Forensic science international. Genetics.

[38]  Jeong Eun Sim,et al.  Collaborative genetic mapping of 12 forensic short tandem repeat (STR) loci on the human X chromosome. , 2012, Forensic science international. Genetics.

[39]  N. Pinto,et al.  Comparative evaluation of alternative batteries of genetic markers to complement autosomal STRs in kinship investigations: autosomal indels vs. X-chromosome STRs , 2012, International Journal of Legal Medicine.

[40]  S. Keeney,et al.  The tricky path to recombining X and Y chromosomes in meiosis , 2012, Annals of the New York Academy of Sciences.

[41]  P. Gill,et al.  The recombination landscape around forensic STRs: Accurate measurement of genetic distances between syntenic STR pairs using HapMap high density SNP data. , 2012, Forensic science international. Genetics.

[42]  Pedro V. Silva,et al.  A general method to assess the utility of the X-chromosomal markers in kinship testing. , 2012, Forensic science international. Genetics.

[43]  Pedro V. Silva,et al.  Estimating coancestry from genotypes using a linear regression method , 2011 .

[44]  E. Medina-Acosta Evidence of partial and weak gametic disequilibrium across clusters of pericentromeric short tandem repeats loci on human X chromosome: proceed with caution in forensic genetics. , 2011, Forensic science international. Genetics.

[45]  T. Egeland,et al.  Using X-chromosomal markers in relationship testing: calculation of likelihood ratios taking both linkage and linkage disequilibrium into account. , 2011, Forensic science international. Genetics.

[46]  Deborah Charlesworth,et al.  About PAR: the distinct evolutionary dynamics of the pseudoautosomal region. , 2011, Trends in genetics : TIG.

[47]  N. Morling,et al.  Forensic usefulness of a 25 X‐chromosome single‐nucleotide polymorphism marker set , 2010, Transfusion.

[48]  Chengtao Li,et al.  Analysis of 14 highly informative SNP markers on X chromosome by TaqMan SNP genotyping assay. , 2010, Forensic science international. Genetics.

[49]  Pedro V. Silva,et al.  General Derivation of the Sets of Pedigrees with the Same Kinship Coefficients , 2010, Human Heredity.

[50]  Walther Parson,et al.  Publication of population data of linearly inherited DNA markers in the International Journal of Legal Medicine , 2010, International Journal of Legal Medicine.

[51]  Â. Ribeiro-dos-Santos,et al.  X-linked insertion/deletion polymorphisms: forensic applications of a 33-markers panel , 2010, International Journal of Legal Medicine.

[52]  António Amorim,et al.  A new multiplex for human identification using insertion/deletion polymorphisms , 2009, Electrophoresis.

[53]  Á. Carracedo,et al.  Evaluation of DXS9902, DXS7132, DXS6809, DXS7133, and DXS7423 in humans and chimpanzees: sequence variation, repeat structure, and nomenclature , 2009, International Journal of Legal Medicine.

[54]  T. Wienker,et al.  A New Sex-Specific Genetic Map of the Human Pseudoautosomal Regions (PAR1 and PAR2) , 2009, Human Heredity.

[55]  Á. Carracedo,et al.  A GEP-ISFG collaborative study on the optimization of an X-STR decaplex: data on 15 Iberian and Latin American populations , 2009, International Journal of Legal Medicine.

[56]  J. Edelmann,et al.  Nomenclature discrepancies in the HPRTB short tandem repeat , 2009, International Journal of Legal Medicine.

[57]  Erik T. Bieschke,et al.  Sequence variation at three X chromosomal short tandem repeats in Caucasian and African populations , 2008 .

[58]  Bruce Budowle,et al.  Forensically relevant SNP classes. , 2008, BioTechniques.

[59]  Niels Morling,et al.  ISFG: Recommendations on biostatistics in paternity testing. , 2007, Forensic science international. Genetics.

[60]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[61]  Peter M Vallone,et al.  STRs vs. SNPs: thoughts on the future of forensic DNA testing , 2007, Forensic science, medicine, and pathology.

[62]  R. Szibor X-chromosomal markers: past, present and future. , 2007, Forensic science international. Genetics.

[63]  Michael Krawczak,et al.  Kinship testing with X-chromosomal markers: mathematical and statistical issues. , 2007, Forensic science international. Genetics.

[64]  J. Riancho,et al.  Forensic efficiency of microsatellites and single nucleotide polymorphisms on the X chromosome , 2007, International Journal of Legal Medicine.

[65]  A. Amorim,et al.  Genetic diversity of 10 X chromosome STRs in northern Portugal , 2007, International Journal of Legal Medicine.

[66]  Amanda B. Hepler,et al.  Genetic relatedness analysis: modern data and new challenges , 2006, Nature Reviews Genetics.

[67]  J. Edelmann,et al.  A new Web site compiling forensic chromosome X research is now online , 2006, International Journal of Legal Medicine.

[68]  A. Carracedo,et al.  DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis , 2006, International Journal of Legal Medicine.

[69]  J. Edelmann,et al.  Forensic validation of the X-chromosomal STR-markers GATA165B12, GATA164A09, DXS9908 and DXS7127 in German population , 2006 .

[70]  A. Amorim,et al.  Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. , 2005, Forensic science international.

[71]  B. Ludes,et al.  SNPs and MALDI-TOF MS: tools for DNA typing in forensic paternity testing and anthropology. , 2005, Journal of forensic sciences.

[72]  David L. Steffen,et al.  The DNA sequence of the human X chromosome , 2005, Nature.

[73]  C. Gunter Genome biology: She moves in mysterious ways , 2005, Nature.

[74]  J. Edelmann,et al.  The HumARA genotype is linked to spinal and bulbar muscular dystrophy and some further disease risks and should no longer be used as a DNA marker for forensic purposes , 2005, International Journal of Legal Medicine.

[75]  Horst Hameister,et al.  Wide genome comparisons reveal the origins of the human X chromosome. , 2004, Trends in genetics : TIG.

[76]  A. Amorim,et al.  Microsatellite variation and evolutionary history of PCDHX/Y gene pair within the Xq21.3/Yp11.2 hominid-specific homology block. , 2004, Molecular biology and evolution.

[77]  M. Krawczak,et al.  Use of X-linked markers for forensic purposes , 2003, International Journal of Legal Medicine.

[78]  A. González-Neira,et al.  Chimpanzee homologous of human Y specific STRs. A comparative study and a proposal for nomenclature. , 2002, Forensic science international.

[79]  Y. Maeno,et al.  Y-STR haplotype data and allele frequency of the DXS10011 locus in a Japanese population sample. , 2002, Forensic Science International.

[80]  B Brinkmann,et al.  DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. , 2001, Forensic science international.

[81]  P. Walsh,et al.  Sequence variation in humans and other primates at six short tandem repeat loci used in forensic identity testing. , 2001, Forensic science international.

[82]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[83]  M. Nachman,et al.  Estimate of the mutation rate per nucleotide in humans. , 2000, Genetics.

[84]  C. Schlötterer Evolutionary dynamics of microsatellite DNA , 2000, Chromosoma.

[85]  Mei Peng,et al.  The direction of microsatellite mutations is dependent upon allele length , 2000, Nature Genetics.

[86]  D. Page,et al.  Four evolutionary strata on the human X chromosome. , 1999, Science.

[87]  B Brinkmann,et al.  Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. , 1998, American journal of human genetics.

[88]  P. Gill,et al.  DNA Recommendations 1997 of the International Society for Forensic Genetics , 1998, Vox Sanguinis.

[89]  H. Ellegren,et al.  Directional evolution in germline microsatellite mutations , 1996, Nature Genetics.

[90]  Tomas A. Prolla,et al.  Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair , 1993, Nature.

[91]  E. Rappaport,et al.  Fluorescent approaches to diagnosis of Lesch-Nyhan syndrome and quantitative analysis of carrier status. , 1993, Molecular and cellular probes.

[92]  Wen-Hsiung Li,et al.  Male-driven evolution of DNA sequences , 1993, Nature.

[93]  B. Oostra,et al.  Trinucleotide repeat polymorphism in the androgen receptor gene (AR). , 1992, Nucleic acids research.

[94]  L. Jin,et al.  Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. , 1992, Genomics.

[95]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[96]  C. M. Hearne,et al.  Tetranucleotide repeat polymorphism at the HPRT locus. , 1991, Nucleic acids research.

[97]  C. Caskey,et al.  DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. , 1991, American journal of human genetics.

[98]  P. Hedrick,et al.  Gametic disequilibrium measures: proceed with caution. , 1987, Genetics.

[99]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[100]  T. Ohta,et al.  Stepwise mutation model and distribution of allelic frequencies in a finite population. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[101]  S. Jain,et al.  GENETIC STRUCTURE OF POPULATIONS. , 1975, Evolution; international journal of organic evolution.

[102]  Motoo Kimura,et al.  A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population*. , 1973, Genetical research.

[103]  C. Migeon,et al.  Sex Chromosome Abnormalities , 1967, Nature.

[104]  N Pinto,et al.  Improving publication quality and the importance of Post Publication Peer Review: The illustrating example of X chromosome analysis and calculation of forensic parameters. , 2019, Forensic science international. Genetics.

[105]  H. Hwa,et al.  A 1204-single nucleotide polymorphism and insertion-deletion polymorphism panel for massively parallel sequencing analysis of DNA mixtures. , 2018, Forensic science international. Genetics.

[106]  L. F. Jobim,et al.  A GHEP-ISFG collaborative study on the genetic variation of 38 autosomal indels for human identification in different continental populations. , 2018, Forensic science international. Genetics.

[107]  Leonor Gusmão,et al.  Revised guidelines for the publication of genetic population data. , 2017, Forensic science international. Genetics.

[108]  L. Gusmão,et al.  New sequence variants detected at DXS10148, DXS10074 and DXS10134 loci. , 2016, Forensic science international. Genetics.

[109]  V. Stepanov,et al.  Forensic and population genetic characteristics of 62 X chromosome SNPs revealed by multiplex PCR and MALDI-TOF mass spectrometry genotyping in 4 North Eurasian populations. , 2016, Legal medicine.

[110]  T. Egeland,et al.  Estimating relatedness with no prior specification of any genealogy: The role of the X-chromosome , 2013 .

[111]  M. Ota,et al.  Development of multiplex assay with 16 SNPs on X chromosome for degraded samples. , 2012, Legal medicine.

[112]  N. Morling,et al.  Analysis of 12 X-STRs in Greenlanders, Danes and Somalis using Argus X-12 , 2011, International Journal of Legal Medicine.

[113]  Á. Carracedo,et al.  A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR , 2011, International Journal of Legal Medicine.

[114]  N. Pinto,et al.  X-chromosome markers in kinship testing: a generalisation of the IBD approach identifying situations where their contribution is crucial. , 2011, Forensic science international. Genetics.

[115]  M. F. Pinheiro,et al.  Study of DXS9895 and DXS7130: Population data from North of Portugal. , 2011, Journal of forensic and legal medicine.

[116]  Luis A. San-José,et al.  A general model for , 2009 .

[117]  M. Krawczak,et al.  Genetic Diversity in the , 2008 .

[118]  J. Nielsen,et al.  Chromosome abnormalities found among 34910 newborn children: results from a 13-year incidence study in Århus, Denmark , 2005, Human Genetics.

[119]  Stephen F. Schaffner,et al.  The X chromosome in population genetics , 2004, Nature Reviews Genetics.

[120]  X. R. L N K C Z V E A Y H G U T X R L N K C Z V E A Y H [General method]. , 2000, Diabetes & metabolism.

[121]  I. Yuasa,et al.  DXS10011: a hypervariable tetranucleotide STR polymorphism on the X chromosome , 2000, International Journal of Legal Medicine.

[122]  D N Stivers,et al.  The utility of short tandem repeat loci beyond human identification: Implications for development of new DNA typing systems , 1999, Electrophoresis.

[123]  A. Carracedo,et al.  DNA recommendations , 1997, International Journal of Legal Medicine.

[124]  J. Nielsen,et al.  Sex chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. , 1990, Birth defects original article series.

[125]  A. Jacquard Genetic Relationships between Relatives , 1974 .

[126]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .