Effect of reaction conditions on the product distribution during Fischer–Tropsch synthesis over an industrial Fe-Mn catalyst

Abstract The product distributions of Fischer–Tropsch synthesis (FTS) over an industrial Fe-Mn catalyst are investigated under different reaction conditions in an integral fixed bed reactor. The typical non-ASF distributions of the FTS products are analyzed in terms of the competitive steps of the surface reactions, and the desorption, diffusion and re-adsorption of alkenes under these broad reaction conditions. It is found that alkene selectivities are significantly higher than those for alkanes in a broad chain length range from C2 to about C20 over the Fe-Mn catalyst under most reaction conditions. Under the operation conditions of the catalyst, alkenes with carbon number larger than 27 cannot be detected in the wax products. Consequently, the contents of heavy alkanes have a slight increase at about C27, implying that primary alkenes with chain longer than C27 are dominantly hydrogenated to alkanes due to the long residence time of the products in the catalyst pores.

[1]  B. Wojciechowski,et al.  On interpreting FT product distribution data , 1987 .

[2]  J. Gaube,et al.  Fischer-Tropsch-Synthese. Neuere Untersuchungen und Entwicklungen , 1983 .

[3]  B. Zhong,et al.  Fischer-Tropsch synthesis on Fe-Mn ultrafine catalysts , 1994 .

[4]  J. Gaube,et al.  Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis , 1999 .

[5]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[6]  S. Ledakowicz,et al.  Kinetic model of fischer-tropsch synthesis selectivity in the slurry phase , 1992 .

[7]  S. T. Sie PROCESS DEVELOPMENT AND SCALE UP: IV. CASE HISTORY OF THE DEVELOPMENT OF A FISCHER-TROPSCH SYNTHESIS PROCESS , 1998 .

[8]  R. B. Anderson,et al.  Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1 , 1950 .

[9]  Enrique Iglesia,et al.  Hydrogen and CO Intrapellet Diffusion Effects in Ruthenium-Catalyzed Hydrocarbon Synthesis , 1994 .

[10]  Ian C. Yates,et al.  Analysis and prediction of product distributions of the Fischer-Tropsch synthesis , 1988 .

[11]  S. Reyes,et al.  Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis , 1991 .

[12]  S. T. Sie,et al.  Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS) , 1991 .

[13]  C. Satterfield,et al.  Product distributions of the Fischer-Tropsch synthesis on precipitated iron catalysts , 1989 .

[14]  J. H. Wilson,et al.  Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis , 1996 .

[15]  Charles N. Satterfield,et al.  Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor , 1982 .

[16]  C. Satterfield,et al.  EVIDENCE FOR TWO CHAIN GROWTH PROBABILITIES ON IRON CATALYSTS IN THE FISCHER‐TROPSCH SYNTHESIS , 1984 .

[17]  H. Oosterbeek,et al.  Chain Length Dependence of α-Olefin Readsorption in Fischer-Tropsch Synthesis , 1995 .

[18]  Hans Schulz,et al.  Kinetic modelling of Fischer–Tropsch product distributions , 1999 .

[19]  Hans Schulz,et al.  Reactions of α-olefins of different chain length added during Fischer–Tropsch synthesis on a cobalt catalyst in a slurry reactor , 1999 .

[20]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[21]  Alexis T. Bell,et al.  Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts , 1986 .

[22]  H. Stenger Distributed chain growth probabilities for the Fischer-Tropsch synthesis , 1985 .

[23]  A. Punt,et al.  Gas-To-Liquids Processes: Current Status & Future Prospects , 1998 .

[24]  E. Iglesia,et al.  The Importance of Olefin Readsorption and H2/CO Reactant Ratio for Hydrocarbon Chain Growth on Ruthenium Catalysts , 1993 .

[25]  E. Iglesia,et al.  Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity , 1992 .

[26]  P. A. Jacobs,et al.  Metal particle size distributions and Fischer-Tropsch selectivity. An extended Schulz-Flory model , 1980 .

[27]  Enrique Iglesia,et al.  Selectivity Control and Catalyst Design in the Fischer-Tropsch Synthesis: Sites, Pellets, and Reactors , 1993 .

[28]  Andreas Jess,et al.  Fischer–Tropsch-synthesis with nitrogen-rich syngas: Fundamentals and reactor design aspects , 1999 .

[29]  Nosa O. Egiebor,et al.  Carbon number distribution of fischer — Tropsch CO‐hydrogenation products from precipitated iron catalysts , 1985 .

[30]  R. Snel The nature of hydrocarbon synthesis by means of hydrogenation of carbon monoxide on iron-based catalysts: Part II. dynamic adsorption/desorption equilibria , 1989 .

[31]  B. Zhong,et al.  A new product distribution formulation for fischer-Tropsch synthesis. Effect of metal crystallite size distribution , 1992 .

[32]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[33]  J. Longwell,et al.  Product distribution from iron catalysts in Fischer-Tropsch slurry reactors , 1982 .

[34]  Gisela Henrici-Olivé,et al.  The Fischer‐Tropsch Synthesis: Molecular Weight Distribution of Primary Products and Reaction Mechanism , 1976 .

[35]  D. Vanhove,et al.  Selective catalytic synthesis of linear paraffins from CO and H2 over cobalt supported catalysts , 1979 .

[36]  D. A. Storm,et al.  Hydrocarbon synthesis from COH2 on supported iron: Effect of particle size and interstitials , 1986 .