Discrete adaptive zone light elements (DAZLE): a new approach to adaptive imaging

New advances in Liquid Crystal Spatial Light Modulators (LCSLM) offer opportunities for large adaptive optics in the midwave infrared spectrum. A light focusing adaptive imaging system, using the zero-order diffraction state of a polarizer-free liquid crystal polarization grating modulator to create millions of high transmittance apertures, is envisioned in a system called DAZLE (Discrete Adaptive Zone Light Elements). DAZLE adaptively selects large sets of LCSLM apertures using the principles of coded masks, embodied in a hybrid Discrete Fresnel Zone Plate (DFZP) design. Issues of system architecture, including factors of LCSLM aperture pattern and adaptive control, image resolution and focal plane array (FPA) matching, and trade-offs between filter bandwidths, background photon noise, and chromatic aberration are discussed.

[1]  Ludmila Nikolova,et al.  Diffraction Efficiency and Selectivity of Polarization Holographic Recording , 1984 .

[2]  Brant C. White,et al.  United States patent , 1985 .

[3]  Michael J. Escuti,et al.  A polarization-independent liquid crystal spatial light modulator , 2006, SPIE Optics + Photonics.

[4]  R. L. Johnson,et al.  Sharper images by focusing soft X-rays with photon sieves , 2001, Nature.

[5]  Michael J. Escuti,et al.  Numerical analysis of polarization gratings using the finite-difference time-domain method , 2007 .

[6]  Michael J. Escuti,et al.  L‐6: Late‐News Paper: Achromatic Diffraction Using Reactive Mesogen Polarization Gratings , 2007 .

[7]  Michael J. Escuti,et al.  Polarization‐independent modulation for projection displays using small‐period LC polarization gratings , 2007 .

[8]  Shin-Tson Wu,et al.  Electrically switchable Fresnel lens using a polymer-separated composite film. , 2005, Optics express.

[9]  M. Ishiguro Minimum redundancy linear arrays for a large number of antennas , 1980 .

[10]  Sh. D. Kakichashvili Polarizational (anisotropic-vectorial) holographic recording on practical photoanisotropic materials , 1977 .

[11]  Chulwoo Oh,et al.  Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation. , 2006, Optics express.

[12]  Michael J. Escuti,et al.  P‐209: Evaluation of Projection Schemes for the Liquid Crystal Polarization Grating Operating on Unpolarized Light , 2006 .

[13]  James C. Wiltse,et al.  The Fresnel zone plate antenna , 1991 .

[14]  A. Moffet Minimum-redundancy linear arrays , 1968 .

[15]  Michael J. Escuti,et al.  Simplified spectropolarimetry using reactive mesogen polarization gratings , 2006, SPIE Optics + Photonics.

[16]  Gregory P. Crawford,et al.  Liquid-crystal diffraction gratings using polarization holography alignment techniques , 2005 .

[17]  J Turunen,et al.  Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings. , 2000, Optics letters.

[18]  Martin Schadt,et al.  Optical patterning of multi-domain liquid-crystal displays with wide viewing angles , 1996, Nature.

[19]  T. M. Cannon,et al.  Coded aperture imaging with uniformly redundant arrays. , 1978, Applied optics.

[20]  Ravi K. Komanduri,et al.  Elastic continuum analysis of the liquid crystal polarization grating. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Michael J. Escuti,et al.  39.4: Polarization‐Independent Switching With High Contrast from a Liquid Crystal Polarization Grating , 2006 .

[22]  Gabriella Cipparrone,et al.  Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces , 2006 .

[23]  E. E. Fenimore,et al.  Comparison Of Fresnel Zone Plates And Uniformly Redundant Arrays , 1978, Optics & Photonics.