Effective Differential Lüroth's Theorem

Abstract This paper focuses on effectivity aspects of the Luroth's theorem in differential fields. Let F be an ordinary differential field of characteristic 0 and F 〈 u 〉 be the field of differential rational functions generated by a single indeterminate u . Let be given non-constant rational functions v 1 , … , v n ∈ F 〈 u 〉 generating a differential subfield G ⊆ F 〈 u 〉 . The differential Luroth's theorem proved by Ritt in 1932 states that there exists v ∈ G such that G = F 〈 v 〉 . Here we prove that the total order and degree of a generator v are bounded by min j ord ( v j ) and ( n d ( e + 1 ) + 1 ) 2 e + 1 , respectively, where e : = max j ord ( v j ) and d : = max j deg ( v j ) . As a byproduct, our techniques enable us to compute a Luroth generator by dealing with a polynomial ideal in a polynomial ring in finitely many variables.

[1]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933 .

[2]  Xiaoshan,et al.  LUEROTH’S THEOREM IN DIFFERENTIAL FIELDS , 2002 .

[3]  Guillaume Chèze,et al.  Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Lüroth Theorem , 2010, J. Complex..

[4]  Lisi D'Alfonso,et al.  On the Index and the Order of Quasi-regular Implicit Systems of Differential Equations , 2008, 0804.4842.

[5]  David Sevilla,et al.  On Multivariate Rational Function Decomposition , 2002, J. Symb. Comput..

[6]  Pablo Solernó,et al.  On the complexity of the resolvent representation of some prime differential ideals , 2006, J. Complex..

[7]  M. Fliess,et al.  Variations sur la notion de contrôlabilité , 2000 .

[8]  Brahim Sadik,et al.  A Bound for the Order of Characteristic Set Elements of an Ordinary Prime Differential Ideal and some Applications , 2000, Applicable Algebra in Engineering, Communication and Computing.

[9]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[10]  J. Ritt Partial differential algebra , 1950 .

[11]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[12]  J. Lüroth,et al.  Beweis eines Satzes über rationale Curven , 1875 .

[13]  Alexandre Sedoglavic,et al.  A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations , 2010, J. Symb. Comput..

[14]  Thomas W. Sederberg,et al.  Improperly parametrized rational curves , 1986, Comput. Aided Geom. Des..

[15]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[16]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[17]  F. Ollivier Une réponse négative au problème de Lüroth différentiel en dimension 2 , 1998 .

[18]  Tomás Recio,et al.  A Rational Function Decomposition Algorithm by Near-Separated Polynomials , 1995, J. Symb. Comput..

[19]  David Sevilla,et al.  Unirational fields of transcendence degree one and functional decomposition , 2001, ISSAC '01.