Self-adaptive inexact proximal point methods

Abstract We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form $\mu({\bf{x}})=\beta\|\nabla f({\bf{x}})\|^{\eta}$ where η∈[0,2) and β>0 is a constant, we obtain convergence to the set of minimizers that is linear for η=0 and β sufficiently small, superlinear for η∈(0,1), and at least quadratic for η∈[1,2). Two different acceptance criteria for an approximate solution to the proximal problem are analyzed. These criteria are expressed in terms of the gradient of the proximal function, the gradient of the original function, and the iteration difference. With either acceptance criterion, the convergence results are analogous to those of the exact iterates. Preliminary numerical results are presented using some ill-conditioned CUTE test problems.

[1]  Teemu Pennanen,et al.  Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity , 2002, Math. Oper. Res..

[2]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[3]  Alfredo N. Iusem,et al.  Inexact Variants of the Proximal Point Algorithm without Monotonicity , 2002, SIAM J. Optim..

[4]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[5]  C. Ha A generalization of the proximal point algorithm , 1987, 26th IEEE Conference on Decision and Control.

[6]  Paulo J. S. Silva,et al.  Inexact Proximal Point Algorithms and Descent Methods in Optimization , 2005 .

[7]  Masao Fukushima,et al.  The Proximal Point Algorithm with Genuine Superlinear Convergence for the Monotone Complementarity Problem , 2000, SIAM J. Optim..

[8]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[9]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[10]  Patrick L. Combettes,et al.  Proximal Methods for Cohypomonotone Operators , 2004, SIAM J. Control. Optim..

[11]  Alexander Kaplan,et al.  Proximal Point Methods and Nonconvex Optimization , 1998, J. Glob. Optim..

[12]  P. Tseng Error Bounds and Superlinear Convergence Analysis of Some Newton-Type Methods in Optimization , 2000 .

[13]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[14]  F. Luque Asymptotic convergence analysis of the proximal point algorithm , 1984 .

[15]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[16]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[17]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[18]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[19]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[20]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[21]  Masao Fukushima,et al.  Regularized Newton Methods for Convex Minimization Problems with Singular Solutions , 2004, Comput. Optim. Appl..