Self-adaptive inexact proximal point methods
暂无分享,去创建一个
[1] Teemu Pennanen,et al. Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity , 2002, Math. Oper. Res..
[2] P. Wolfe. Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .
[3] Alfredo N. Iusem,et al. Inexact Variants of the Proximal Point Algorithm without Monotonicity , 2002, SIAM J. Optim..
[4] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[5] C. Ha. A generalization of the proximal point algorithm , 1987, 26th IEEE Conference on Decision and Control.
[6] Paulo J. S. Silva,et al. Inexact Proximal Point Algorithms and Descent Methods in Optimization , 2005 .
[7] Masao Fukushima,et al. The Proximal Point Algorithm with Genuine Superlinear Convergence for the Monotone Complementarity Problem , 2000, SIAM J. Optim..
[8] B. Martinet,et al. R'egularisation d''in'equations variationnelles par approximations successives , 1970 .
[9] Ya-Xiang Yuan,et al. On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.
[10] Patrick L. Combettes,et al. Proximal Methods for Cohypomonotone Operators , 2004, SIAM J. Control. Optim..
[11] Alexander Kaplan,et al. Proximal Point Methods and Nonconvex Optimization , 1998, J. Glob. Optim..
[12] P. Tseng. Error Bounds and Superlinear Convergence Analysis of Some Newton-Type Methods in Optimization , 2000 .
[13] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[14] F. Luque. Asymptotic convergence analysis of the proximal point algorithm , 1984 .
[15] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[16] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[17] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[18] William W. Hager,et al. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.
[19] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[20] M. Fukushima,et al. On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .
[21] Masao Fukushima,et al. Regularized Newton Methods for Convex Minimization Problems with Singular Solutions , 2004, Comput. Optim. Appl..