Metal-based reactive nanomaterials

Recent developments in materials processing and characterization resulted in the discovery of a new type of reactive materials containing nanoscaled metal components. The well-known high oxidation energies of metallic fuels can now be released very rapidly because of the very high reactive interface areas in such metal-based reactive nanomaterials. Consequently, these materials are currently being examined for an entire range of applications in energetic formulations inappropriate for conventional, micron-sized metal fuels having relatively low reaction rates. New application areas, such as reactive structural materials, are also being explored. Research remains active in manufacturing and characterization of metal-based reactive nanomaterials including elemental metal nanopowders and various nanocomposite material systems. Because of the nanometer scale of the individual particles, or phase domains, and because of the very high enthalpy of reaction between components of the nanocomposite materials, the final phase compositions, morphology, and thermodynamic properties of the reactive nanocomposite materials may be different from those of their micron-scaled counterparts. Ignition mechanisms in such materials can be governed by heterogeneous reactions that are insignificant for materials with less developed reactive interface areas. New combustion regimes are being observed that are affected by very short ignition delays combined with very high metal combustion temperatures. Current progress in this rapidly growing research area is reviewed and some potential directions for the future research are discussed.

[1]  S. Son,et al.  Lead-free electric matches. , 2002 .

[2]  Paul Roth,et al.  Formation and properties of ZnO nano-particles from gas phase synthesis processes , 2002 .

[3]  D. Vollath,et al.  Synthesis and properties of ceramic nanoparticles and nanocomposites , 1997 .

[4]  Shufeng Wang,et al.  Dynamical Effects of the Oxide Layer in Aluminum Nanoenergetic Materials , 2005 .

[5]  D. Wilson,et al.  Combustion of Consolidated and Confined Metastable Intermolecular Composites , 2005 .

[6]  R. Simpson,et al.  Use of Epoxides in the Sol−Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts , 2001 .

[7]  E. Dreizin,et al.  Kinetic Analysis of Thermite Reactions in Al-MoO3 Nanocomposites , 2006 .

[8]  J. Seitzman,et al.  The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants , 2002 .

[9]  S. Son,et al.  Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3) , 2007 .

[10]  R. Hjelm,et al.  Characterization of components of nano-energetics by small-angle scattering techniques , 2007 .

[11]  E. Dreizin,et al.  Production of carbon-coated aluminium nanopowders in pulsed microarc discharge , 2002 .

[12]  S. Pratsinis,et al.  Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor , 1995 .

[13]  E. Dreizin,et al.  Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders , 2005 .

[14]  Yonghun Jung,et al.  ULTRA-FINE POWDER BY WIRE EXPLOSION METHOD , 2001 .

[15]  R. Ames Energy Release Characteristics of Impact-Initiated Energetic Materials , 2005 .

[16]  Carl V. Thompson,et al.  Self‐propagating explosive reactions in Al/Ni multilayer thin films , 1990 .

[17]  E. Dreizin,et al.  Ignition of aluminum-rich Al–Ti mechanical alloys in air , 2006 .

[18]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[19]  M. Zachariah,et al.  Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. , 2005, The journal of physical chemistry. B.

[20]  D. E. Rosner Flame Synthesis of Valuable Nanoparticles: Recent Progress/Current Needs in Areas of Rate Laws, Population Dynamics, and Characterization , 2005 .

[21]  Joe H. Satcher,et al.  Nanostructured Energetic Materials with Sol-Gel Methods , 2003 .

[22]  Kenneth K. Kuo,et al.  Challenges in Propellants and Combustion: 100 Years after Nobel. , 1997 .

[23]  Geun-Hie Rim,et al.  The mechanism of combustion of superfine aluminum powders , 2003 .

[24]  A. Turcotte,et al.  Thermal Characterization of Passivated Nanometer Size Aluminium Powders , 2000 .

[25]  M. Pantoya,et al.  Effect of nanocomposite synthesis on the combustion performance of a ternary thermite. , 2005, The journal of physical chemistry. B.

[26]  Curtis E. Johnson,et al.  Characterization of Nanometer- to Micron-Sized Aluminum Powders: Size Distribution from Thermogravimetric Analysis , 2007 .

[27]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[28]  Lawrence W. Hrubesh,et al.  New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors , 2001 .

[29]  Philippe M. Fauchet,et al.  Nano‐ to Microscale Porous Silicon as a Cell Interface for Bone‐Tissue Engineering , 2007 .

[30]  E. Dreizin,et al.  Fully dense nano-composite energetic powders prepared by arrested reactive milling , 2005 .

[31]  E. .. Mittemeijer,et al.  Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium , 2002 .

[32]  Omar M. Knio,et al.  Joining of stainless-steel specimens with nanostructured Al/Ni foils , 2004 .

[33]  J. Agrawal Recent trends in high-energy materials , 1998 .

[34]  Weihua Jiang,et al.  Pulsed wire discharge for nanosize powder synthesis , 1998 .

[35]  Ian Colbeck,et al.  The morphology and optical properties of soot produced by different fuels , 1997 .

[36]  R. Denoyel,et al.  Influence of particles size on thermal properties of aluminium powder , 2007 .

[37]  M. Zachariah,et al.  Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. , 2005, Nano letters.

[38]  G. S. Lee,et al.  A review of energetic materials synthesis , 2002 .

[39]  W. Johnson,et al.  Melting behavior of nanocrystalline aluminum powders , 1993 .

[40]  V. A. Babuk,et al.  Model of aluminum agglomerate evolution in combustion products of solid rocket propellant , 2002 .

[41]  E. Dreizin,et al.  Aluminum-Rich Al-MoO3 Nanocomposite Powders Prepared by Arrested Reactive Milling , 2008 .

[42]  M. Pantoya,et al.  Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites , 2005 .

[43]  M. Zachariah,et al.  Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry , 2006 .

[44]  Craig M. Tarver,et al.  Chemical Kinetic Modeling of HMX and TATB Laser Ignition Tests , 2004 .

[45]  Jianglong Yu,et al.  Shell/core structure and magnetic properties of carbon-coated Fe-Co(C) nanocapsules , 2001 .

[46]  E. Dreizin,et al.  Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels , 2006 .

[47]  A. J. Wagner,et al.  Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils , 2003 .

[48]  Kaili Zhang,et al.  Nanoenergetic Materials for MEMS: A Review , 2007, Journal of Microelectromechanical Systems.

[49]  Shufeng Wang,et al.  Fast spectroscopy of laser-initiated nanoenergetic materials , 2003 .

[50]  N. Vaganova,et al.  A strength model of heterogeneous ignition of metal particles , 1992 .

[51]  J. Puszynski Reactivity of Nanosize Aluminum with Metal Oxides and Water Vapor , 2003 .

[52]  R. Axelbaum Synthesis of stable metal and non-oxide ceramic nanoparticles in sodium/halide flames , 2000 .

[53]  A. Navrotsky Energetics of nanoparticle oxides: interplay between surface energy and polymorphism† , 2003, Geochemical transactions.

[54]  Vigor Yang,et al.  Combustion of nano-aluminum and liquid water , 2007 .

[55]  Dibyendu Mukherjee,et al.  Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol , 2003 .

[56]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[57]  Sindee L. Simon,et al.  The melting behavior of aluminum nanoparticles , 2007 .

[58]  Omar M. Knio,et al.  Reactive nanostructured foil used as a heat source for joining titanium , 2004 .

[59]  R. Dwivedi,et al.  Thermal stability of aluminium oxides prepared from gel , 1985 .

[60]  Kelvin T. Higa,et al.  Energetic Nanocomposite Lead-Free Electric Primers , 2007 .

[61]  Q. Jiang,et al.  Size-dependent melting depression and lattice contraction of Bi nanocrystals , 2003 .

[62]  S. Mitra,et al.  Synthesis of nanometal oxides and nanometals using hot-wire and thermal CVD , 2008 .

[63]  D. Vollath Plasma synthesis of nanopowders , 2008 .

[64]  E. Dreizin,et al.  Phase changes in metal combustion , 2000 .

[65]  D. Dlott,et al.  Ultrafast Chemistry of Nanoenergetic Materials Studied by Time-Resolved Infrared Spectroscopy: Aluminum Nanoparticles in Teflon , 2007 .

[66]  M. Zachariah,et al.  Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles , 2004 .

[67]  Sung-Taick Lee,et al.  Effect of multidimensional flamelets in composite propellant combustion , 1994 .

[68]  R. Yetter,et al.  Combustion of bimodal nano/micron-sized aluminum particle dust in air , 2007 .

[69]  Michelle L. Pantoya,et al.  Laser ignition of nanocomposite thermites , 2004 .

[70]  S. Son,et al.  Combustion Behaviors Resulting from Bimodal Aluminum Size Distributions in Thermites , 2007 .

[71]  E. Dreizin,et al.  On problems of isoconversion data processing for reactions in Al-rich Al–MoO3 thermites , 2008 .

[72]  Graham T. Smith Getting the measure of PM machinability , 1998 .

[73]  Michael R. Zachariah,et al.  Energy accumulation in nanoparticle collision and coalescence processes , 2002 .

[74]  A. J. Gavens,et al.  Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation , 2003 .

[75]  Anand Krishnan Prakash,et al.  Synthesis and Reactivity of a Super‐Reactive Metastable Intermolecular Composite Formulation of Al/KMnO4 , 2005 .

[76]  G. Zou,et al.  Preparation and characterization of nanocrystalline powders of Cu–Zn alloy by wire electrical explosion method , 2001 .

[77]  Blaine W. Asay,et al.  Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .

[78]  S. Son,et al.  Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite , 2007 .

[79]  G. Mesyats,et al.  The integral of specific current action and the specific energy input under fast electrical explosion , 1998, Proceedings ISDEIV. 18th International Symposium on Discharges and Electrical Insulation in Vacuum (Cat. No.98CH36073).

[80]  Shufeng Wang,et al.  Near‐Infrared and Visible Absorption Spectroscopy of Nano‐Energetic Materials Containing Aluminum and Boron , 2005 .

[81]  C. Law,et al.  Evolution of particle temperature and internal composition for zirconium burning in air , 1996 .

[82]  R. J. Jouet,et al.  Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites , 2006 .

[83]  E. Dreizin,et al.  Control of Structural Refinement and Composition in Al‐MoO3 Nanocomposites Prepared by Arrested Reactive Milling , 2006 .

[84]  Tobias Lindström,et al.  Magnesium diboride nanobridges fabricated by electron-beam lithography , 2005 .

[85]  V. Kindratenko,et al.  Fractal dimensional classification of aerosol particles by computer-controlled scanning electron microscopy. , 1994, Environmental science & technology.

[86]  E. Dreizin,et al.  Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles , 2006 .

[87]  J. Puszynski,et al.  The Effect of Nanopowder Attributes on Reaction Mechanism and Ignition Sensitivity of Nanothermites , 2005 .

[88]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[89]  Jan A. Puszynski,et al.  Processing and Ignition Characteristics of Aluminum-Bismuth Trioxide Nanothermite System , 2007 .

[90]  Timothy P. Weihs,et al.  Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils , 2000 .

[91]  C. Law,et al.  Phases of titanium combustion in air , 1998 .

[92]  Hans Moosmüller,et al.  Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment. , 2007, Applied optics.

[93]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[94]  K. Kuo,et al.  Potential Usage of Energetic Nano-sized Powders for Combustion and Rocket Propulsion , 2003 .

[95]  R. Munz,et al.  Application of transferred arcs to the production of nanoparticles , 1999 .

[96]  D. Zanchet,et al.  Estimating nanoparticle size from diffraction measurements , 2000 .

[97]  M. Zachariah,et al.  Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration : Application to the oxidative coating of aluminum nanoparticles , 2006 .

[98]  M. Pantoya,et al.  Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .

[100]  Michele E. Decroix,et al.  High-irradiance laser ignition of explosives , 2003 .

[101]  M. Mench,et al.  Comparison of Thermal Behavior of Regular and Ultra-fine Aluminum Powders (Alex) Made from Plasma Explosion Process , 1998 .

[102]  M. Alcoutlabi,et al.  Effects of confinement on material behaviour at the nanometre size scale , 2005 .

[103]  A. R. Mingaleev,et al.  Nanosecond electrical explosion of micron diameter wire , 2006 .

[104]  E. Dreizin,et al.  Temperature jumps in free metal particle combustion , 1993 .

[105]  Deepak Kapoor,et al.  Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites , 2007 .

[106]  M. Gogulya,et al.  Explosive characteristics of aluminized HMX-based nanocomposites , 2008 .

[107]  K. Morsi,et al.  Review: reaction synthesis processing of Ni–Al intermetallic materials , 2001 .

[108]  S. Tse,et al.  Flame synthesis of aligned tungsten oxide nanowires , 2006 .

[109]  S. Son,et al.  Time‐Resolved Spectral Emission of Deflagrating Nano‐Al and Nano‐MoO3 Metastable Interstitial Composites , 2004 .

[110]  J. Li,et al.  Melting enthalpy depression of nanocrystals , 2002 .

[111]  Muyu Zhao,et al.  Melting and surface melting of low-dimensional In crystals , 2004 .

[112]  R. Hunt,et al.  On nanoparticle aggregation during vapor phase synthesis , 1999 .

[113]  B. Kear,et al.  Synthesis of oxide nanoparticles in low pressure flames , 1999 .

[114]  William Felder,et al.  A new gas-phase combustion synthesis process for pure metals, alloys, and ceramics , 1992 .

[115]  F. Tichelaar,et al.  Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates , 2000 .

[116]  E. Dreizin,et al.  Preparation of Energetic Metastable Nano-Composite Materials by Arrested Reactive Milling , 2003 .

[117]  Helmut Mehrer Diffusion in Intermetallics , 1996 .

[118]  H. Reiss,et al.  The effect of surface on melting point. , 1948, Journal of colloid science.

[119]  A. Stiegman,et al.  Laser Initiation Processes in Thermite Energetic Materials Using Laser Desorption Ionization Time-of-Flight Mass Spectrometry , 2007 .

[120]  R. Simpson,et al.  Nanostructured energetic materials using sol-gel methodologies , 2001 .

[121]  R. Yetter,et al.  Combustion of Nanoscale Al/MoO3 Thermite in Microchannels , 2007 .

[122]  S. Gangopadhyay,et al.  Nanoenergetic Composite of Mesoporous Iron Oxide and Aluminum Nanoparticles , 2006 .

[123]  C. V. Siclen,et al.  Binding energy, vapor pressure, and melting point of semiconductor nanoparticles , 2007 .

[124]  V. Fortov,et al.  Detonation in an aluminum-Teflon mixture , 2005 .

[125]  O. Sherby,et al.  Deformation of fine-grained alumina by grain boundary sliding accommodated by slip , 2003 .

[126]  T. P. Weihs,et al.  Room-temperature soldering with nanostructured foils , 2003 .

[127]  Tomi Laurila,et al.  Interfacial reactions between lead-free solders and common base materials , 2005 .

[128]  M. Brewster,et al.  Radiative Properties of MoO3 and Al Nanopowders From Light-Scattering Measurements , 2007 .

[129]  R. Davé,et al.  Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques , 2002 .

[130]  H. Krier,et al.  Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves , 2006 .

[131]  S. Son Performance and Characterization of Nanoenergetic Materials at Los Alamos , 2003 .

[132]  T. Brill,et al.  Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives , 1993 .

[133]  M. Pantoya,et al.  Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 , 2006 .

[134]  S. S. Bondarchuk,et al.  Productions of Ultra‐Fine Powders and Their Use in High Energetic Compositions , 2003 .

[135]  R. A. Bayles,et al.  Small particle melting of pure metals , 1986 .

[136]  M. Pantoya,et al.  Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide , 2004 .

[137]  V. Zarko,et al.  Chemical Analysis of Aluminum as a Propellant Ingredient and Determination of Aluminum and Aluminum Nitride in Condensed Combustion Products , 2000 .

[138]  J. Schoonman,et al.  Plasma synthesized nano-aluminum powders , 2006 .

[139]  Michael R. Zachariah,et al.  Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids , 2003 .

[140]  K. Kuo,et al.  Preignition dynamics of RDX-based energetic materials under CO2 laser heating☆ , 1993 .

[141]  Andreas Kornowski,et al.  Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[142]  A. Gash,et al.  Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique , 2005 .

[143]  P. Roth,et al.  Formation of Si-nanoparticles in a microwave reactor: Comparison between experiments and modelling , 2005 .

[144]  M. Zachariah,et al.  Optical and Modeling Studies of Sodium/Halide Reactions for the Formation of Titanium and Boron Nanoparticles , 1996 .

[145]  V. Zarko,et al.  Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders , 2007 .

[146]  S. Son,et al.  Nano‐Scale Tungsten Oxides for Metastable Intermolecular Composites , 2004 .

[147]  H. Krier,et al.  REFLECTED SHOCK IGNITION AND COMBUSTION OF ALUMINUM AND NANOCOMPOSITE THERMITE POWDERS , 2007 .

[148]  Frans D. Tichelaar,et al.  Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum , 2002 .

[149]  Hugh Alan Bruck,et al.  Development and characterization of high performance solid propellants containing nano-sized energetic ingredients , 2007 .

[150]  L. Meda,et al.  Nanoparticles for solid rocket propulsion , 2006 .

[151]  Curtis E. Johnson,et al.  Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating , 2005 .

[152]  Toshihiro Tanaka,et al.  Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems , 2001 .

[153]  D. Vollath,et al.  Coated Nanoparticles: A New Way to Improved Nanocomposites , 1999 .

[154]  F. Tepper Nanosize powders produced by electro-explosion of wire and their potential applications , 2000 .

[155]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[156]  Margaret S. Wooldridge,et al.  Gas-phase combustion synthesis of particles , 1998 .

[157]  S. Tse,et al.  Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis , 2008 .

[158]  M. Zachariah,et al.  Understanding the mechanism of aluminium nanoparticle oxidation , 2006 .

[159]  G. V. Ivanov,et al.  'ACTIVATED' ALUMINUM AS A STORED ENERGY SOURCE FOR PROPELLANTS , 1997 .

[160]  A. Misra,et al.  Deformation Behavior of Nanostructured Metallic Multilayers , 2001 .

[161]  A. Gromov,et al.  Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water , 2006 .

[162]  E. Dreizin,et al.  General Trends in Metal Particles Heterogeneous Combustion , 1993 .

[163]  R. Sarathi,et al.  Generation of nano aluminium powder through wire explosion process and its characterization , 2007 .

[164]  E. Dreizin,et al.  A study of mechanical alloying processes using reactive milling and discrete element modeling , 2005 .

[165]  T. P. Weihs,et al.  Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry , 2003 .

[166]  M. S. El-shall,et al.  Vapor Phase Growth and Assembly of Metallic, Intermetallic, Carbon, and Silicon Nanoparticle Filaments , 2003 .

[167]  Alexandra Navrotsky,et al.  Thermochemistry of Nanomaterials , 2001 .

[168]  Vigor Yang,et al.  Modeling of combustion and ignition of solid-propellant ingredients , 2007 .

[169]  E. Dreizin,et al.  Exothermic reactions in Al–CuO nanocomposites , 2006 .

[170]  S. Bhattacharya,et al.  Self-assembled Ordered Energetic Composites of CuO Nanorods and Nanowells and Al Nanoparticles with High Burn Rates , 2005 .

[171]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[172]  A. Ramaswamy,et al.  A “Micro-vision” of the Physio-Chemical Phenomena Occurring in Nanoparticles of Aluminum , 2004 .

[173]  D. Wilson,et al.  Manufacturing and performance of nanometric Al/MoO3 energetic materials , 2007 .

[174]  G. Rim,et al.  Passivation process for superfine aluminum powders obtained by electrical explosion of wires , 2003 .

[175]  R. J. Jouet,et al.  Combustion synthesis of metallic foams from nanocomposite reactants , 2006 .

[176]  X. Dong,et al.  Carbon-coated Fe–Co(C) nanocapsules prepared by arc discharge in methane , 1999 .

[177]  E. Dreizin,et al.  Oxidation and melting of aluminum nanopowders. , 2006, The journal of physical chemistry. B.

[178]  S. Son,et al.  Dynamic measurements of electrical conductivity in metastable intermolecular composites , 2006 .

[179]  E. Dreizin,et al.  Effect of Phase Changes on Metal‐Particle Combustion Processes , 2003 .

[180]  S. George,et al.  Tungsten atomic layer deposition on cobalt nanoparticles , 2008 .

[181]  J. Margrave,et al.  Laser‐induced ignition in solid‐state combustion , 1989 .

[182]  G. Mesyats,et al.  The current density and the specific energy input in fast electrical explosion , 1999 .

[183]  E. Dreizin,et al.  Arrested Reactive Milling Synthesis and Characterization of Sodium‐Nitrate Based Reactive Composites , 2007 .