Volmer–Weber and Stranski–Krastanov InAs-(Al,Ga)As quantum dots emitting at 1.3 μm

Quantum dots (QDs) formed on GaAs(100) substrates by InAs deposition followed by (Al,Ga)As or (In,Ga,Al)As overgrowth demonstrate a photoluminescence (PL) peak that is redshifted (up to 1.3 μm) compared to PL emission of GaAs-covered QDs. The result is attributed to redistribution of InAs molecules in the system in favor of the QDs, stimulated by Al atoms in the cap layer. The deposition of a 1 nm thick AlAs cover layer on top of the InAs–GaAs QDs results in replacement of InAs molecules of the wetting layer by AlAs molecules, leading to a significant increase in the heights of the InAs QDs, as follows from transmission electron microscopy. This effect is directly confirmed by transmission electron microscopy indicating a transition to a Volmer–Weber-like QD arrangement. We demonstrate an injection laser based on this kind of QDs.

[1]  N. Ledentsov,et al.  Mechanisms of InGaAlAs solid solution decomposition stimulated by InAs quantum dots , 2000 .

[2]  G. Abstreiter,et al.  Influence of a thin AlAs cap layer on optical properties of self-assembled InAs/GaAs quantum dots , 1999 .

[3]  A. R. Kovsh,et al.  Lasing at a wavelength close to 1.3 µm in InAs quantum-dot structures , 1999 .

[4]  G. Salamo,et al.  Morphology of InAs self-organized islands on AlAs surfaces , 1999 .

[5]  N. Ledentsov,et al.  Control of the emission wavelength of self-organized InGaAs quantum dots: main achievements and present status , 1999 .

[6]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[7]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[8]  J. Leem,et al.  Visible photoluminescence from self-assembled InAs quantum dots embedded in AlAs cladding layers , 1999 .

[9]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[10]  A. R. Kovsh,et al.  Photo-and electroluminescence in the 1.3-µm wavelength range from quantum-dot structures grown on GaAs substrates , 1999 .

[11]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[12]  Shigeo Sugou,et al.  Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission , 1998 .

[13]  Hajime Shoji,et al.  Self-organized quantum dots and quantum dot lasers (invited) , 1998 .

[14]  John E. Bowers,et al.  1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .

[15]  A. Sasaki Islands and critical thickness of InAs grown by MBE on nominally- and misoriented GaAs substrates , 1995 .

[16]  M. Sugawara,et al.  Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3 µm , 1994 .

[17]  Anupam Madhukar,et al.  InAs island‐induced‐strain driven adatom migration during GaAs overlayer growth , 1994 .

[18]  H. Kamada,et al.  Strong photoluminescence emission at room temperature of strained InGaAs quantum disks (200–30 nm diameter) self‐organized on GaAs (311)B substrates , 1994 .

[19]  John E. Bowers,et al.  Time‐resolved optical characterization of InGaAs/GaAs quantum dots , 1994 .

[20]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[21]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[22]  Serge Luryi,et al.  Future Trends in Microelectronics , 1996 .