Cluster-based control of nonlinear dynamics

The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. The approach is applied to a separating flow dominated by the Kelvin-Helmholtz shedding.

[1]  Steven L. Brunton,et al.  Compressive sampling and dynamic mode decomposition , 2013, 1312.5186.

[2]  S. Ulam Problems in modern mathematics , 1964 .

[3]  Mattias Wahde,et al.  Biologically inspired optimization methods , 2008 .

[4]  Chih-Ming Ho,et al.  Perturbed Free Shear Layers , 1984 .

[5]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[6]  Frank Sommer,et al.  Mehrfachlösungen bei laminaren Strömungen mit druckinduzierter Ablösung : eine Kuspen-Katastrophe , 1992 .

[7]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[8]  U. Dallmann,et al.  Some physical aspects of separation bubble on a rounded backward-facing step , 2004 .

[9]  Steven L. Brunton,et al.  Optimal Sensor Placement and Enhanced Sparsity for Classification , 2013, ArXiv.

[10]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[11]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[12]  E. Hopf Statistical Hydromechanics and Functional Calculus , 1952 .

[13]  Roger W. Brockett,et al.  Notes on the Control of the Liouville Equation , 2012 .

[14]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[15]  Russ Tedrake,et al.  Convex optimization of nonlinear feedback controllers via occupation measures , 2013, Int. J. Robotics Res..

[16]  Gary Froyland,et al.  Extracting Dynamical Behavior via Markov Models , 2001 .

[17]  R. T. Cheng,et al.  Numerical Solution of the Navier‐Stokes Equations by the Finite Element Method , 1972 .

[18]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[19]  Bernd R. Noack,et al.  Maximum-entropy closure for a Galerkin system of incompressible shear flow , 2011 .

[20]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[21]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[22]  R. Brockett On the control of a flock by a leader , 2010 .

[23]  A. Pines,et al.  Multiple-quantum dynamics in NMR: A directed walk through Liouville space , 1987 .

[24]  R. Brockett Minimizing attention in a motion control context , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[25]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[26]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[27]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[28]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[29]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[30]  Erik M. Bollt,et al.  Applied and Computational Measurable Dynamics , 2013, Mathematical modeling and computation.

[31]  Richard Bellman,et al.  Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.

[32]  Jean-Luc Aider,et al.  Closed-loop separation control using machine learning , 2014, Journal of Fluid Mechanics.