Linear-Time Recognition of Helly Circular-Arc Models and Graphs
暂无分享,去创建一个
Jayme Luiz Szwarcfiter | Min Chih Lin | Jeremy P. Spinrad | Ross M. McConnell | Benson L. Joeris | J. Spinrad | R. McConnell | J. Szwarcfiter | B. Joeris
[1] Fanica Gavril,et al. Algorithms on circular-arc graphs , 1974, Networks.
[2] Haim Kaplan,et al. A Simpler Linear-Time Recognition of Circular-Arc Graphs , 2006, SWAT.
[3] Jayme Luiz Szwarcfiter,et al. Unit Circular-Arc Graph Representations and Feasible Circulations , 2008, SIAM J. Discret. Math..
[4] Éva Tardos,et al. Algorithm design , 2005 .
[5] Jeremy P. Spinrad,et al. Efficient graph representations , 2003, Fields Institute monographs.
[6] S. Benzer. ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[7] Ross M. McConnell. Linear-Time Recognition of Circular-Arc Graphs , 2003, Algorithmica.
[8] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .
[9] Haim Kaplan,et al. Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs , 2009, Discret. Appl. Math..
[10] Jayme Luiz Szwarcfiter,et al. Characterizations and Linear Time Recognition of Helly Circular-Arc Graphs , 2006, COCOON.
[11] F. Roberts. Graph Theory and Its Applications to Problems of Society , 1987 .
[12] Alan Tucker,et al. Characterizing circular-arc graphs , 1970 .
[13] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[14] Alan C. Tucker,et al. An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..
[15] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[16] Jayme Luiz Szwarcfiter,et al. Efficient construction of unit circular-arc models , 2006, SODA '06.
[17] Xiaotie Deng,et al. Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..
[18] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .
[19] Laurent Viennot,et al. Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..
[20] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[21] Robert E. Tarjan,et al. A linear-time algorithm for a special case of disjoint set union , 1983, J. Comput. Syst. Sci..