Strong intermolecular antiferromagnetic verdazyl-verdazyl coupling in the solid state.

Strong magnetic couplings are generally observed intramolecularly in organic diradicals or in systems in which they are promoted by crystal engineering strategies involving, for example, transition metal ligation. We herein present a strong intermolecularly coupling verdazyl radical in the solid state without the use of such design strategies. The crystal structure of an acetylene-substituted verdazyl radical shows a unique antiparallel face-to-face orientation of the neighboring verdazyl molecules along with verdazyl-acetylene interactions giving rise to an alternating antiferromagnetic Heisenberg chain. Single crystal structural data at 80, 100, 173, and 223 K show that one of the π-stacking distances depends on temperature, while heat capacity data indicate the absence of a phase transition. Based on this structural input, broken symmetry DFT calculations predict a change from an alternating linear Heisenberg chain with two comparable coupling constants J1 and J2 at higher temperatures towards dominant pair interactions at lower temperatures. The predicted antiferromagnetic coupling is confirmed experimentally by magnetic susceptibility, solid-state EPR and NMR spectroscopic results.

[1]  A. Studer,et al.  Cooperative Magnetism in Crystalline N-Aryl-Substituted Verdazyl Radicals: First-Principles Predictions and Experimental Results. , 2017, Chemistry.

[2]  A. Studer,et al.  Black-box determination of temperature-dependent susceptibilities for crystalline organic radicals with complex magnetic topologies. , 2016, Physical chemistry chemical physics : PCCP.

[3]  T. Herng,et al.  Stable 3,6-Linked Fluorenyl Radical Oligomers with Intramolecular Antiferromagnetic Coupling and Polyradical Characters. , 2016, Journal of the American Chemical Society.

[4]  V. Young,et al.  The Planar Blatter Radical: Structural Chemistry of 1,4-Dihydrobenzo[e][1,2,4]triazin-4-yls. , 2016, Angewandte Chemie.

[5]  T. Herng,et al.  Higher Order π-Conjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene. , 2016, Journal of the American Chemical Society.

[6]  K. Müllen,et al.  Tetrabenzo[a,f,j,o]perylene: a polycyclic aromatic hydrocarbon with an open-shell singlet biradical ground state. , 2015, Angewandte Chemie.

[7]  N. Doltsinis,et al.  Profluorescent verdazyl radicals – synthesis and characterization† †Electronic supplementary information (ESI) available. CCDC 1051008–1051011. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00724k Click here for additional data file. Click here for addition , 2015, Chemical science.

[8]  S. Hill,et al.  Magnetic ordering and anisotropy in heavy atom radicals. , 2015, Journal of the American Chemical Society.

[9]  J. Rawson,et al.  A magnetostructural investigation of an abrupt spin transition for 1-phenyl-3-trifluoromethyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl. , 2014, Journal of the American Chemical Society.

[10]  Run‐Wei Li,et al.  Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar's aromatic sextet rule in singlet biradicaloids. , 2013, Journal of the American Chemical Society.

[11]  Y. Shigeta,et al.  Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. , 2013, Journal of the American Chemical Society.

[12]  J. Veciana,et al.  Playing with organic radicals as building blocks for functional molecular materials. , 2012, Chemical Society reviews.

[13]  V. Robert,et al.  Spin transition and exchange interaction: Janus visions of supramolecular spin coupling between face-to-face verdazyl radicals. , 2011, Angewandte Chemie.

[14]  M. Georges,et al.  Verdazyl radicals as substrates for organic synthesis: a synthesis of 3-methyl-5-aryl-1,3,4-oxadiazolones. , 2011, The Journal of organic chemistry.

[15]  J. Novoa,et al.  Calculation of microscopic exchange interactions and modelling of macroscopic magnetic properties in molecule-based magnets. , 2011, Chemical Society reviews.

[16]  K. Awaga,et al.  Solid state NMR strategies for the structural characterization of new hybrid materials based on the intercalation of nitroxide radicals into CdPS3. , 2011, Solid state nuclear magnetic resonance.

[17]  R. Hicks Stable radicals : fundamentals and applied aspects of odd-electron compounds , 2010 .

[18]  K. Awaga,et al.  Intercalation of stable organic radicals into layered inorganic host matrices: Preparation and structural characterization of Cd1−xPS3(metaMPYNN)2x , 2009 .

[19]  J. Kochi,et al.  Intermolecular π‐dimer of oxoverdazyl radicals with long‐distance multicenter (2e/8c) bonding via nitrogen atoms , 2009 .

[20]  M. Georges,et al.  1,3‐Dipolar Cycloaddition Reactions Initiated with the 1,5‐Dimethyl‐3‐phenyl‐6‐oxoverdazyl Radical , 2008 .

[21]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[22]  P. Otieno,et al.  Verdazyl-Mediated Living-Radical Polymerization of Styrene and n-Butyl Acrylate , 2007 .

[23]  B. Koivisto,et al.  Intramolecular pi-dimerization in a 1,1'-bis(verdazyl)ferrocene diradical. , 2006, Journal of the American Chemical Society.

[24]  B. Koivisto,et al.  The magnetochemistry of verdazyl radical-based materials , 2005 .

[25]  M. Itkis,et al.  Bistability and the phase transition in 1,3,2-dithiazolo[4,5-b]pyrazin-2-yl. , 2004, Journal of the American Chemical Society.

[26]  M. Itkis,et al.  Bistabilities in 1,3,2-dithiazolyl radicals. , 2004, Journal of the American Chemical Society.

[27]  A. Rajca,et al.  Organic spin clusters: macrocyclic-macrocyclic polyarylmethyl polyradicals with very high spin S = 5-13. , 2004, Journal of the American Chemical Society.

[28]  J. Sutter,et al.  Temperature dependence of the crystal lattice organization of coordination compounds involving nitronyl nitroxide radicals: a magnetic and structural investigation. , 2002, Inorganic chemistry.

[29]  J. Novoa,et al.  Magnetic properties of organic molecular crystals via an algebraic Heisenberg Hamiltonian. Applications to WILVIW, TOLKEK, and KAXHAS nitronyl nitroxide crystals , 2002 .

[30]  A. Rajca,et al.  Magnetic Ordering in an Organic Polymer , 2001, Science.

[31]  Xiulan Xie,et al.  Solid-state NMR spectroscopy of paramagnetic metallocenes. , 2001, Journal of magnetic resonance.

[32]  Fujita,et al.  Room-Temperature Magnetic Bistability in Organic Radical Crystals. , 1999, Science.

[33]  R. Bader,et al.  A Green's function for the density , 1998 .

[34]  J. Rawson,et al.  Spontaneous Magnetization in a Sulfur–Nitrogen Radical at 36 K , 1996 .

[35]  Harold H. Fox,et al.  Structural Indicators of Electronic Interaction in the 1,1‘,5,5‘-Tetramethyl-6,6‘-dioxo- 3,3‘-biverdazyl Diradical , 1996 .

[36]  A. Epstein,et al.  Organic and Organometallic Molecular Magnetic Materials—Designer Magnets , 1994 .

[37]  M. Novak,et al.  A ferromagnetic transition at 1.48 K in an organic nitroxide , 1993, Nature.

[38]  K. Awaga,et al.  An Organic Radical Ferromagnet , 1991 .

[39]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[40]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[41]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[42]  K. Bowers,et al.  Anomalous paramagnetism of copper acetate , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  N. Doltsinis,et al.  Effect of the C(3)-Substituent in Verdazyl Radicals on their Profluorescent Behavior. , 2016, Chimia.

[44]  W. Marsden I and J , 2012 .

[45]  A. W. Cordes,et al.  REDOX, MAGNETIC, AND STRUCTURAL PROPERTIES OF 1,3,2-DITHIAZOLYL RADICALS. A CASE STUDY ON THE TERNARY HETEROCYCLE S3N5C4 , 1998 .