Fast Iterative Method in Solving Eikonal Equations: A Multi-level Parallel Approach

Abstract The fast marching method is widely used to solve the eikonal equation. By introducing a new way of managing propagation interfaces which avoid the use of expensive data structures, the fast iterative method reveals to be a faster variant with a higher parallel potential compared to the fast marching method. We investigate in this paper a multi-level parallel approach for the fast iterative method which is well fitted for today heterogenous and hierarchical architectures. We show experiment results which focus on the fine-grained parallel level of the algorithm and we give a performance analysis.

[1]  M. Herrmann A Domain Decomposition Parallelization of the Fast Marching Method , 2003 .

[2]  Christopher M. Kuster,et al.  Computational Study of Fast Methods for the Eikonal Equation , 2005, SIAM J. Sci. Comput..

[3]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[4]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[5]  Frédéric Gibou,et al.  A parallel fast sweeping method for the Eikonal equation , 2013, J. Comput. Phys..

[6]  Nahid Emad,et al.  A Fine-Grained Parallel Model for the Fast Iterative Method in Solving Eikonal Equations , 2013, 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.

[7]  Christian Gout,et al.  Generalized fast marching method: applications to image segmentation , 2008, Numerical Algorithms.

[8]  Peter G. Lelièvre,et al.  Computing first-arrival seismic traveltimes on unstructured 3-D tetrahedral grids using the Fast Marching Method , 2011 .

[9]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[10]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[12]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[13]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[14]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[15]  Zhao,et al.  PARALLEL IMPLEMENTATIONS OF THE FAST SWEEPING METHOD , 2007 .

[16]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[17]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[18]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[19]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[20]  Michael Breuß,et al.  An adaptive domain-decomposition technique for parallelization of the fast marching method , 2011, Appl. Math. Comput..

[21]  Rachid Deriche,et al.  Control Theory and Fast Marching Techniques for Brain Connectivity Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  W. Jeong UUCS-07-010 A Fast Iterative Method for a Class of Hamilton-Jacobi Equations on Parallel Systems , 2007 .