Obstacle problem for von Kármán equations

[1]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  Noboru Kikuchi,et al.  Analysis of Certain Unilateral Problems in von Karman Plate Theory by a Penalty Method-part 1 , 1980 .

[4]  Noboru Kikuchi,et al.  Analysis of certain unilateral problems in von karman plate theory by a penalty method-part 2. Approximation and numerical analysis , 1980 .

[5]  J. Oden Penalty Methods for Constrained Problems in Nonlinear Elasticity , 1981 .

[6]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[7]  A. Friedman Variational principles and free-boundary problems , 1982 .

[8]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[9]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[10]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[11]  A note on duality for von Kármán plates in the case of the obstacle problem , 1985 .

[12]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[13]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[14]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape Design: Theory and Applications , 1989 .

[15]  Opposite principles in nonlinear conservative systems , 1989 .

[16]  G. Strang,et al.  Geometric nonlinearity: potential energy, complementary energy, and the gap function , 1989 .

[17]  Yang Gao On the extreme variational principles for nonlinear elastic plates , 1990 .

[18]  Y. Cheung,et al.  On the extremum complementary energy principles for nonlinear elastic shells , 1990 .