Numerical solution method for general interval quadratic programming
暂无分享,去创建一个
[1] Debjani Chakraborty,et al. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming , 2001, Fuzzy Sets Syst..
[2] Jati K. Sengupta. Optimal decisions under uncertainty , 1981 .
[3] R. Fletcher. Practical Methods of Optimization , 1988 .
[4] Shiang-Tai Liu,et al. A numerical solution method to interval quadratic programming , 2007, Appl. Math. Comput..
[5] Jiri Rohn. An algorithm for checking stability of symmetric interval matrices , 1996, IEEE Trans. Autom. Control..
[6] R. Słowiński. A multicriteria fuzzy linear programming method for water supply system development planning , 1986 .
[7] S. Białas. Necessary and Sufficient Condition for the Hurwitz Stability of Symmetrizable Interval Matrices , 2000 .
[8] C. Soh. Necessary and sufficient conditions for stability of symmetric interval matrices , 1990 .
[9] John M. Wilson,et al. Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..
[10] Gyeong-Mi Cho,et al. Log-barrier method for two-stage quadratic stochastic programming , 2005, Appl. Math. Comput..
[11] M. Vila,et al. A general model for fuzzy linear programming , 1989 .
[12] Wei Li,et al. General Solutions for Linear Programming with Interval Right Hand Side , 2006, 2006 International Conference on Machine Learning and Cybernetics.
[13] L. Thomas. Optimal Decision under Uncertainty , 1982 .
[14] Paolo Serafini. Linear programming with variable matrix entries , 2005, Oper. Res. Lett..