Constraint Fluids

We present a fluid simulation method based on Smoothed Particle Hydrodynamics (SPH) in which incompressibility and boundary conditions are enforced using holonomic kinematic constraints on the density. This formulation enables systematic multiphysics integration in which interactions are modeled via similar constraints between the fluid pseudoparticles and impenetrable surfaces of other bodies. These conditions embody Archimede's principle for solids and thus buoyancy results as a direct consequence. We use a variational time stepping scheme suitable for general constrained multibody systems we call SPOOK. Each step requires the solution of only one Mixed Linear Complementarity Problem (MLCP) with very few inequalities, corresponding to solid boundary conditions. We solve this MLCP with a fast iterative method. Overall stability is vastly improved in comparison to the unconstrained version of SPH, and this allows much larger time steps, and an increase in overall performance by two orders of magnitude. Proof of concept is given for computer graphics applications and interactive simulations.

[1]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Brian Mirtich,et al.  Impulse-based dynamic simulation of rigid body systems , 1996 .

[3]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[4]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[5]  Afzal Suleman,et al.  SPH with the multiple boundary tangent method , 2009 .

[6]  Pep Español,et al.  Incompressible smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[7]  J. Troutman Variational Principles in Mechanics , 1983 .

[8]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[9]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[10]  Folkmar Bornemann,et al.  Homogenization in Time of Singularly Perturbed Mechanical Systems , 1998, Lecture notes in mathematics.

[11]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[12]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[13]  Folkmar Bornemann,et al.  Homogenization in Time of Singularly Perturbed Conservative Mechanical Systems , 1998 .

[14]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[15]  Markus Gross,et al.  Point-Based Graphics , 2007 .

[16]  Fabrice Colin,et al.  Computing a null divergence velocity field using smoothed particle hydrodynamics , 2006, J. Comput. Phys..

[17]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[18]  Marie-Paule Cani,et al.  Animating Lava Flows , 1999, Graphics Interface.

[19]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[20]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[21]  Mihai Anitescu,et al.  Optimization-based simulation of nonsmooth rigid multibody dynamics , 2006, Math. Program..

[22]  Renato Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, ACM Trans. Graph..

[23]  Anders Ynnerman,et al.  Haptic Rendering of Dynamic Volumetric Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[24]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[25]  U. Ascher,et al.  Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifolds , 1995 .

[26]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[27]  Yoshiaki Oka,et al.  A particle method for calculating splashing of incompressible viscous fluid , 1995 .

[28]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[29]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[30]  William G. Hoover,et al.  Smooth Particle Applied Mechanics: The State of the Art , 2006 .

[31]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[32]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[33]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[34]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[35]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[36]  C. Lacoursière Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts , 2007 .

[37]  C. Lacoursière Regularized; Stabilized; Variational Methods for Multibodies , 2007 .

[38]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[39]  Martin Servin,et al.  Ieee Transactions on Visualization and Computer Graphics 2 Rigid Body Cable for Virtual Environments , 2022 .

[40]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[41]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[42]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[43]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[44]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[45]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[46]  P. Ungar,et al.  Motion under a strong constraining force , 1957 .

[47]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[48]  Raanan Fattal,et al.  Efficient simulation of inextensible cloth , 2007, SIGGRAPH 2007.

[49]  S. Kitsionas,et al.  Smoothed Particle Hydrodynamics with particle splitting, applied to self-gravitating collapse , 2002, astro-ph/0203057.

[50]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[51]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[52]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[53]  John Kenneth Salisbury,et al.  Representing Fluid with Smoothed Particle Hydrodynamics in a Cranial Base Simulator , 2008, MMVR.

[54]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[55]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[56]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[57]  Francis J. Narcowich,et al.  Sufficient conditions for penalty formulation methods in analytical dynamics , 1993 .

[58]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[59]  Anders Ynnerman,et al.  Haptic visualization of computational fluid dynamics data using reactive forces , 2005, IS&T/SPIE Electronic Imaging.

[60]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[61]  Matthias Müller,et al.  Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. , 2004, Technology and health care : official journal of the European Society for Engineering and Medicine.

[62]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[63]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[64]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[65]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[66]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[67]  Martin Servin,et al.  Interactive simulation of elastic deformable materials. , 2006 .

[68]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[69]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[70]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[71]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .