Analysis of a 2-field finite element solver for poroelasticity on quadrilateral meshes

Abstract This paper presents a novel 2-field finite element solver for linear poroelasticity on convex quadrilateral meshes. The Darcy flow is discretized for fluid pressure by a lowest-order weak Galerkin (WG) finite element method, which establishes the discrete weak gradient and numerical velocity in the lowest-order Arbogast-Correa space. The linear elasticity is discretized for solid displacement by the enriched Lagrangian finite elements with a special treatment for the volumetric dilation. These two types of finite elements are coupled through the implicit Euler temporal discretization to solve poroelasticity problems. A rigorous error analysis is presented along with numerical tests to demonstrate the accuracy and locking-free property of this new solver.

[1]  Yanzhao Cao,et al.  Quasilinear poroelasticity: Analysis and hybrid finite element approximation , 2015 .

[2]  M. Wheeler,et al.  Finite element methods in linear poroelasticity: theoretical and computational results , 2005 .

[3]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[4]  Douglas N. Arnold,et al.  Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..

[5]  A priori error estimates for the numerical solution of a coupled geomechanics and reservoir flow model with stress-dependent permeability , 2010 .

[6]  Simon Tavener,et al.  A Two-Field Finite Element Solver for Poroelasticity on Quadrilateral Meshes , 2018, ICCS.

[7]  Mary F. Wheeler,et al.  Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity , 2013, Computational Geosciences.

[8]  Simon Tavener,et al.  Lowest-Order Weak Galerkin Finite Element Method for Darcy Flow on Convex Polygonal Meshes , 2018, SIAM J. Sci. Comput..

[9]  Son-Young Yi,et al.  A Study of Two Modes of Locking in Poroelasticity , 2017, SIAM J. Numer. Anal..

[10]  Bin Zheng,et al.  Lowest-Order Weak Galerkin Finite Element Methods for Linear Elasticity on Rectangular and Brick Meshes , 2019, J. Sci. Comput..

[11]  Ruishu Wang,et al.  A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements , 2020, Comput. Math. Appl..

[12]  C. Carstensen,et al.  Medius analysis and comparison results for first-order finite element methods in linear elasticity , 2015 .

[13]  Shangyou Zhang,et al.  The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids , 2016, Comput. Math. Appl..

[14]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[15]  Nicholas J Giori,et al.  The low permeability of healthy meniscus and labrum limit articular cartilage consolidation and maintain fluid load support in the knee and hip. , 2012, Journal of biomechanics.

[16]  Béatrice Rivière,et al.  A Finite Element Method with Strong Mass Conservation for Biot’s Linear Consolidation Model , 2017, J. Sci. Comput..

[17]  Benjamin B. Wheatley,et al.  An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading. , 2015, Journal of biomechanics.

[18]  Son-Young Yi Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .

[19]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[20]  Xiaozhe Hu,et al.  Weak Galerkin method for the Biot's consolidation model , 2017, Comput. Math. Appl..

[21]  Todd Arbogast,et al.  Construction of $$H({\mathrm{div}})$$H(div)-conforming mixed finite elements on cuboidal hexahedra , 2019, Numerische Mathematik.

[22]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[23]  D. Mijuca On hexahedral finite element HC8/27 in elasticity , 2004 .

[24]  Bishnu P. Lamichhane A mixed finite element method for nearly incompressible elasticity and Stokes equations using primal and dual meshes with quadrilateral and hexahedral grids , 2014, J. Comput. Appl. Math..

[25]  Ludmil T. Zikatanov,et al.  A nonconforming finite element method for the Biot's consolidation model in poroelasticity , 2016, J. Comput. Appl. Math..

[26]  David Kay,et al.  Stabilized Lowest-Order Finite Element Approximation for Linear Three-Field Poroelasticity , 2015, SIAM J. Sci. Comput..

[27]  Todd Arbogast,et al.  Two Families of H(div) Mixed Finite Elements on Quadrilaterals of Minimal Dimension , 2016, SIAM J. Numer. Anal..

[28]  Guang Lin,et al.  Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity , 2014, J. Comput. Phys..

[29]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[30]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[31]  S. Hassanizadeh,et al.  Modeling Concentration Distribution and Deformation During Convection-Enhanced Drug Delivery into Brain Tissue , 2012, Transport in Porous Media.

[32]  Simon Tavener,et al.  Penalty-Free Any-Order Weak Galerkin FEMs for Elliptic Problems on Quadrilateral Meshes , 2020, J. Sci. Comput..

[33]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[34]  A. Cheng,et al.  Mandel's problem revisited , 1996 .

[35]  G. Charras,et al.  The cytoplasm of living cells behaves as a poroelastic material , 2013, Nature materials.

[36]  Mary F. Wheeler,et al.  Iteratively coupled mixed and Galerkin finite element methods for poro‐elasticity , 2007 .

[37]  Mary F. Wheeler,et al.  Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach , 2009 .

[38]  Ivan Yotov,et al.  Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach , 2014, 1403.5707.

[39]  Hongxing Rui,et al.  A coupling of weak Galerkin and mixed finite element methods for poroelasticity , 2017, Comput. Math. Appl..

[40]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[41]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[42]  L E Plansky On the management organization and procedural standardization of geologic research , 1985 .

[43]  M. Wheeler,et al.  A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity , 2008 .

[44]  Ludmil T. Zikatanov,et al.  Stability and monotonicity for some discretizations of the Biot’s consolidation model , 2016 .

[45]  Maicon R. Correa,et al.  A new sequential method for three-phase immiscible flow in poroelastic media , 2018, J. Comput. Phys..