The development and evolution of inhibitory neurons in primate cerebrum

[1]  G. Buzsáki,et al.  Sleep down state-active ID2/Nkx2.1 interneurons in the neocortex , 2021, Nature Neuroscience.

[2]  S. Linnarsson,et al.  Molecular architecture of the developing mouse brain , 2020, Nature.

[3]  K. Campbell,et al.  Temporally Distinct Roles for the Zinc Finger Transcription Factor Sp8 in the Generation and Migration of Dorsal Lateral Ganglionic Eminence (dLGE)-Derived Neuronal Subtypes in the Mouse. , 2020, Cerebral cortex.

[4]  Irene Papatheodorou,et al.  UCSC Cell Browser: visualize your single-cell data , 2020, bioRxiv.

[5]  Fabian J. Theis,et al.  CellRank for directed single-cell fate mapping , 2020, Nature Methods.

[6]  David Kulp,et al.  Innovations present in the primate interneuron repertoire , 2020, Nature.

[7]  G. Clowry,et al.  Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon , 2020, Frontiers in Neuroanatomy.

[8]  Trygve E Bakken,et al.  Common cell type nomenclature for the mammalian brain , 2020, eLife.

[9]  Allon M. Klein,et al.  Lineage tracing meets single-cell omics: opportunities and challenges , 2020, Nature Reviews Genetics.

[10]  Kerstin B. Meyer,et al.  BBKNN: fast batch alignment of single cell transcriptomes , 2019, Bioinform..

[11]  G. Fishell,et al.  Interneuron Types as Attractors and Controllers. , 2020, Annual review of neuroscience.

[12]  K. Meletis,et al.  A Spatiomolecular Map of the Striatum. , 2019, Cell reports.

[13]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[14]  S. Pääbo,et al.  Organoid single-cell genomic atlas uncovers human-specific features of brain development , 2019, Nature.

[15]  P. Tooney,et al.  White matter neuron biology and neuropathology in schizophrenia , 2019, npj Schizophrenia.

[16]  Jennifer L Hu,et al.  MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices , 2019, Nature Methods.

[17]  G. Konopka,et al.  Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development , 2019, bioRxiv.

[18]  S. Grillner,et al.  Parkinson's disease: Is it a consequence of human brain evolution? , 2019, Movement disorders : official journal of the Movement Disorder Society.

[19]  E. Anton,et al.  Single-cell transcriptomic analysis of mouse neocortical development , 2019, Nature Communications.

[20]  Daniel J. Miller,et al.  Spatiotemporal transcriptomic divergence across human and macaque brain development , 2018, Science.

[21]  Burak Tepe,et al.  Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons , 2018, Cell reports.

[22]  Oscar Marín,et al.  Development and Functional Diversification of Cortical Interneurons , 2018, Neuron.

[23]  Kenneth D. Harris,et al.  Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq , 2018, Cell reports.

[24]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[25]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[26]  Simon E Fisher,et al.  Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes , 2017, The Journal of Neuroscience.

[27]  Christoph Hafemeister,et al.  Developmental diversification of cortical inhibitory interneurons , 2017, Nature.

[28]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[29]  David Haussler,et al.  Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation , 2017, bioRxiv.

[30]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2017, bioRxiv.

[31]  M. Gerstein,et al.  Molecular and cellular reorganization of neural circuits in the human lineage , 2017, Science.

[32]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[33]  A. Chakrabartty,et al.  Simple Elimination of Background Fluorescence in Formalin-Fixed Human Brain Tissue for Immunofluorescence Microscopy. , 2017, Journal of visualized experiments : JoVE.

[34]  Julien Prados,et al.  Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing , 2017, Nature Communications.

[35]  G. Wagner,et al.  The origin and evolution of cell types , 2016, Nature Reviews Genetics.

[36]  Duan Xu,et al.  Extensive migration of young neurons into the infant human frontal lobe , 2016, Science.

[37]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[38]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[39]  Shawn F. Sorrells,et al.  Brain size and limits to adult neurogenesis , 2016, The Journal of comparative neurology.

[40]  M. Götz,et al.  Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb , 2014, Development.

[41]  Jan H Lui,et al.  Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences , 2013, Nature Neuroscience.

[42]  J. Rubenstein,et al.  Subcortical origins of human and monkey neocortical interneurons , 2013, Nature Neuroscience.

[43]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[44]  Daniel J. Miller,et al.  Prolonged myelination in human neocortical evolution , 2012, Proceedings of the National Academy of Sciences.

[45]  Kasturi Banerjee,et al.  Differential Regulation of Dopaminergic Gene Expression by Er81 , 2010, The Journal of Neuroscience.

[46]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[47]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[48]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[49]  Matthew S. Grubb,et al.  Adult neurogenesis and functional plasticity in neuronal circuits , 2006, Nature Reviews Neuroscience.

[50]  Sébastien Vigneau,et al.  Multiple origins of Cajal-Retzius cells at the borders of the developing pallium , 2005, Nature Neuroscience.

[51]  C. Koch,et al.  What is the function of the claustrum? , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  A. Fasolo,et al.  Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[54]  B. Finlay,et al.  Translating developmental time across mammalian species , 2001, Neuroscience.

[55]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Turner,et al.  Dopaminergic Neurons Intrinsic to the Primate Striatum , 1997, The Journal of Neuroscience.

[57]  Richard F. Martin,et al.  Primate neostriatal neurons containing tyrosine hydroxylase: Immunohistochemical evidence , 1987, Neuroscience Letters.

[58]  P. Rakić Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition , 1974, Science.

[59]  H. Stephan,et al.  QUANTITATIVE COMPARATIVE NEUROANATOMY OF PRIMATES: AN ATTEMPT AT A PHYLOGENETIC INTERPRETATION * , 1969 .