Particle coarsening in high volume fraction solid-liquid mixtures

[1]  Adam Morawiec,et al.  Distribution of grain boundaries in magnesia as a function of five macroscopic parameters , 2004 .

[2]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[3]  P. Voorhees,et al.  The morphological evolution of dendritic microstructures during coarsening , 2006 .

[4]  D. Saylor,et al.  The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters , 2003 .

[5]  M. El-Sayed,et al.  Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. , 2003, Journal of the American Chemical Society.

[6]  W. King,et al.  Connectivity of CSL grain boundaries and the role of deviations from exact coincidence , 2003 .

[7]  P. Voorhees,et al.  A quantitative assessment of the three-dimensional microstructure of a γ-γ ′ alloy , 2003 .

[8]  Brian Puchala,et al.  Collecting and analyzing microstructures in three dimensions: A fully automated approach , 2003 .

[9]  B. Verlinden,et al.  Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries , 2002 .

[10]  G. Spanos,et al.  Three-dimensional observations of proeutectoid cementite precipitates at short isothermal transformation times , 2002 .

[11]  Po-Liang Liu,et al.  The K value distribution of liquid phase sintered microstructures , 2002 .

[12]  A. Rollett Texture Development Dependence on Grain Boundary Properties , 2002 .

[13]  Long-Qing Chen,et al.  Computer simulation of 3-D grain growth using a phase-field model , 2002 .

[14]  A. Rollett,et al.  Editorial: Microstructural Evolution Based on Fundamental Interfacial Properties , 2002 .

[15]  Elizabeth A. Holm,et al.  Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth , 2002 .

[16]  Peter W Voorhees,et al.  Phase-field simulation of 2-D Ostwald ripening in the high volume fraction regime , 2002 .

[17]  X. Qin,et al.  Three-dimensional grain topology–size relationships in a real metallic polycrystal compared with theoretical models , 2002 .

[18]  V. Tikare,et al.  Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems , 2002 .

[19]  Anatoly Snigirev,et al.  Tomographic characterization of grain-size correlations in polycrystalline Al-Sn , 2002, Optics + Photonics.

[20]  P. Voorhees,et al.  Coarsening in solid-liquid mixtures: A summary of results , 2001 .

[21]  D. Saylor,et al.  Evaluating Anisotropic Surface Energies Using the Capillarity Vector Reconstruction Method , 2001 .

[22]  Peter W Voorhees,et al.  Three-dimensional characterization of dendritic microstructures , 2001 .

[23]  P. Voorhees,et al.  Quantitative serial sectioning analysis , 2001, Journal of microscopy.

[24]  P. Voorhees,et al.  Transient Ostwald ripening and the disagreement between steady-state coarsening theory and experiment , 2001 .

[25]  Joseph D. Robson,et al.  Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys , 2001 .

[26]  R. German,et al.  Microstructural parameters related to liquid-phase sintering , 2000 .

[27]  D. Saylor,et al.  Misorientation Dependence of the Grain Boundary Energy in Magnesia , 2000 .

[28]  P. Voorhees,et al.  THE DEVELOPMENT OF SPATIAL CORRELATIONS DURING OSTWALD RIPENING: A TEST OF THEORY , 2000 .

[29]  Hiroshi Ogawa,et al.  Three-dimensional microstructural evolution in ideal grain growth—general statistics , 2000 .

[30]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[31]  Stanislav L. Stoev,et al.  RaFSi - A Fast Watershed Algorithm Based on Rainfalling Simulation , 2000, WSCG.

[32]  D. Kinderlehrer,et al.  Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry , 1999 .

[33]  A. Gokhale,et al.  Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures , 1999 .

[34]  Ulrich Bonse,et al.  Developments in X-Ray Tomography V , 1999 .

[35]  P. Voorhees,et al.  The influence of temperature gradients on ostwald ripening , 1999 .

[36]  P. Voorhees,et al.  Texture evolution and the role of grain boundaries in skeletal formation during coarsening in solid-liquid mixtures , 1999 .

[37]  P. Voorhees,et al.  DYNAMICS OF LATE-STAGE PHASE SEPARATION : A TEST OF THEORY , 1999 .

[38]  David N. Seidman,et al.  Subnanometer scale study of segregation at grain boundaries in an Fe(Si) alloy , 1998 .

[39]  L. Ratke,et al.  Ostwald ripening of liquid phase sintered CuCo dispersions at high volume fractions , 1998 .

[40]  A. Schwartz The potential engineering of grain boundaries through thermomechanical processing , 1998 .

[41]  P. D. Lauren,et al.  Three‐dimensional reconstruction of Widmanstätten plates in Fe–12.3Mn–0.8C , 1997 .

[42]  W. Bender,et al.  The morphology of high volume fraction solid-liquid mixtures: An application of microstructural tomography , 1997 .

[43]  S. P. Marsh,et al.  Kinetics of phase coarsening in dense systems , 1996 .

[44]  P. Voorhees,et al.  Ostwald ripening of solid-liquid Pb-Sn dispersions , 1996 .

[45]  Arun M. Gokhale,et al.  Computer simulation of spatial arrangement and connectivity of particles in three-dimensional microstructure: Application to model electrical conductivity of polymer matrix composite , 1996 .

[46]  P. Voorhees,et al.  Late-stage phase separation: Dynamics, spatial correlations, and structure functions. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  P. Voorhees,et al.  The dynamics of transient Ostwald ripening , 1993 .

[48]  Steven P. Marsh,et al.  Modeling of coarsening and grain growth : proceedings of a symposium sponsored by the Physical Metallurgy Committe, held at the Fall Meeting of the Minerals, Metals, & Materials Society, in Chicago, Illinois, November 2-5, 1992 , 1993 .

[49]  P. Neumann,et al.  Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals , 1991 .

[50]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[51]  P. Voorhees,et al.  Ostwald ripening in a system with a high volume fraction of coarsening phase , 1988, Metallurgical and Materials Transactions A.

[52]  T. Mori,et al.  Determination of the energies of [001] twist boundaries in Cu with the shape of boundary SiO2 particles , 1988 .

[53]  R. German The two-dimensional connectivity of , 1987, Metallurgical and Materials Transactions A.

[54]  G. L. Liedl,et al.  coarsening of δ′(Al3Li) precipitates in binary Al-Li alloys , 1987 .

[55]  R. German The Two-Dimensional Connectivity of Liquid Phase Sintered Microstructures , 1987 .

[56]  Beenakker Numerical simulation of diffusion-controlled droplet growth: Dynamical correlation effects. , 1986, Physical review. A, General physics.

[57]  Marder Correlations and droplet growth. , 1985, Physical review letters.

[58]  M. Gündüz,et al.  The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems , 1985 .

[59]  P. Voorhees,et al.  Solution to the multi-particle diffusion problem with applications to Ostwald ripening—I. Theory , 1984 .

[60]  P. Voorhees,et al.  Solution to the multi-particle diffusion problem with applications to ostwald ripening—II. Computer simulations , 1984 .

[61]  M. Tokuyama,et al.  Statistical-mechanical theory of coarsening of spherical droplets , 1984 .

[62]  J. Ross,et al.  Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction , 1984 .

[63]  Martin E. Glicksman,et al.  Ostwald Ripening and Relaxation in Dendritic Structures , 1984 .

[64]  J. Ross,et al.  Kinetics of phase transitions: Theory of Ostwald ripening , 1983 .

[65]  D. Yoon,et al.  Coarsening of cobalt grains dispersed in liquid copper matrix , 1981 .

[66]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[67]  A. Brailsford,et al.  The dependence of ostwald ripening kinetics on particle volume fraction , 1979 .

[68]  K. Tada,et al.  Ostwald Ripening of Residual Pores in Sintered Copper , 1976, International Journal of Materials Research.

[69]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .

[70]  M. Duesbery,et al.  On the theory of normal grain growth , 1974 .

[71]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[72]  G. Hasson,et al.  Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination , 1971 .

[73]  Mats Hillert,et al.  On the theory of normal and abnormal grain growth , 1965 .

[74]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[75]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[76]  F. N. Rhines,et al.  Absolute interfacial energies of [001] tilt and twist grain boundaries in copper☆ , 1959 .

[77]  G. W. Greenwood The growth of dispersed precipitates in solutions , 1956 .

[78]  An interferometric study of grain boundary grooves in tin , 1955 .

[79]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .

[80]  S. D. Wicksell,et al.  THE CORPUSCLE PROBLEM. A MATHEMATICAL STUDY OF A BIOMETRIC PROBLEM , 1925 .