Matrix factorization based instrumental variable approach for simultaneous identification of Bi-directional path models.

This paper proposes a closed-loop identification approach to integrate matrix factorization algorithms with generalized instrumental variable (GIV) techniques to simultaneously identify the parameters and orders for both forward and backward path models. Aside from the technique of UD factorization, the QR factorization technique, which possesses good numerical property, is utilized for the proposed GIV-based method. The major difficulty and novelty of the proposed approach lies in how to properly construct instruments, number of instruments, and weighting matrices to obtain enhanced identification performance. To the end, the identification accuracy properties, in terms of the covariance matrix of the parameter estimates, are provided. In addition, a sufficient condition of consistent parameter estimates for the GIV-based approach is discussed. The effectiveness of the proposed identification method is demonstrated by simulation results.

[1]  Wei Wang,et al.  Simultaneous identification of bi-directional paths in closed-loop systems with coloured noise , 2015, Autom..

[2]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[3]  Petre Stoica,et al.  Comparison of some instrumental variable methods - Consistency and accuracy aspects , 1981, Autom..

[4]  Brian D. O. Anderson,et al.  Identifiability of linear stochastic systems operating under linear feedback , 1982, Autom..

[6]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Torsten Söderström,et al.  A generalized instrumental variable estimation method for errors-in-variables identification problems , 2011, Autom..

[9]  Alessandro Chiuso,et al.  Sparse plus low rank network identification: A nonparametric approach , 2015, Autom..

[10]  Jianwei Zhang Optimal Instrumental Variable Estimates of the AR Parameters of an ARMA Process , 2006 .

[11]  Sheng Chen,et al.  Identification of non-linear output-affine systems using an orthogonal least-squares algorithm , 1988 .

[12]  Marion Gilson,et al.  Instrumental variable methods for closed-loop system identification , 2005, Autom..

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  N. Higham Review ofMatrix computations: Second edition by G.H. Golub and C.F. Van Loan☆ , 1990 .

[15]  Paul M.J. Van den Hof,et al.  Closed-Loop Issues in System Identification , 1997 .

[16]  Xavier Bombois,et al.  Errors-in-variables identification in dynamic networks - Consistency results for an instrumental variable approach , 2015, Autom..

[17]  Peter C. Young,et al.  Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model , 2015, Autom..

[18]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[19]  D. G. Fisher,et al.  An augmented UD identification algorithm , 1992 .

[20]  T. Söderström,et al.  Optimal instrumental variable estimation and approximate implementations , 1983 .

[21]  D. Grant Fisher,et al.  Simultaneous estimation of process parameters, noise variance, and signal-to-noise ratio , 1995, IEEE Trans. Signal Process..

[22]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[23]  Wei Wang,et al.  Simultaneous Identification of Bidirectional Path Models Based on Process Data , 2015, IEEE Transactions on Automation Science and Engineering.

[24]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[25]  Lennart Ljung,et al.  Decomposition methods for solving least-squares parameter estimation , 1996, IEEE Trans. Signal Process..