On the thickness and arboricity of a graph

We prove that the thickness and the arboricity of a graph with e edges are at most ⌊e3 + 32⌋ and ⌈e2⌉, respectively, and that the latter bound is best possible.

[1]  J Mayer,et al.  Décomposition de K16 en Trois Graphes Planaires , 1972 .

[2]  Edward R. Scheinerman,et al.  The maximum interval number of graphs with given genus , 1987, J. Graph Theory.

[3]  J. Moon,et al.  On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  V B Alekseev,et al.  THE THICKNESS OF AN ARBITRARY COMPLETE GRAPH , 1976 .

[5]  L. Beineke,et al.  The Thickness of the Complete Graph , 1965, Canadian Journal of Mathematics.

[6]  Lowell W. Beineke,et al.  The Coarseness of the Complete Bipartite Graph , 1969, Canadian Journal of Mathematics.

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[9]  John Michael Vasak The Thickness of The Complete Graph , 1976 .

[10]  Harold N. Gabow,et al.  Forests, frames, and games: algorithms for matroid sums and applications , 1988, STOC '88.

[11]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .