Hermite Spline Interpolation on Patches for Parallelly Solving the Vlasov-Poisson Equation

Hermite Spline Interpolation on Patches for Parallelly Solving the Vlasov-Poisson Equation This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.

[1]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[2]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[3]  M. Shoucri,et al.  Numerical integration of the Vlasov equation , 1974 .

[4]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[5]  Scott E. Parker,et al.  Massively Parallel Three-Dimensional Toroidal Gyrokinetic Flux-Tube Turbulence Simulation , 2000 .

[6]  Francis Filbet,et al.  Parallelization of a Vlasov Solver by Communication Overlapping , 2002, PDPTA.

[7]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[8]  R. Bermejo Analysis of an algorithm for the Galerkin-characteristic method , 1991 .

[9]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[10]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[11]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[12]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[13]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[14]  Francis Filbet,et al.  Vlasov simulations of beams with a moving grid , 2004, Comput. Phys. Commun..

[15]  Alain Ghizzo,et al.  A Vlasov code for the numerical simulation of stimulated Raman scattering , 1990 .

[16]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[17]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[18]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[19]  Martin Campos Pinto,et al.  Adaptive numerical resolution of the Vlasov equation. , 2005 .

[20]  Eric Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of Vlasov Equations , 1998 .

[21]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[22]  Alain Ghizzo,et al.  Parallelization of semi-Lagrangian Vlasov codes , 1999, Journal of Plasma Physics.

[23]  Magdi Shoucri,et al.  A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator , 1996 .

[24]  Eric Sonnendrücker,et al.  Vlasov simulations on an adaptive phase-space grid , 2004, Comput. Phys. Commun..

[25]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[26]  Colin J. McKinstrie,et al.  Accurate formulas for the Landau damping rates of electrostatic waves , 1999 .

[27]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .