On the generation of symmetric Lebesgue-like points in the triangle

We compute point sets on the triangle that have low Lebesgue constant, with sixfold symmetries and Gauss-Legendre-Lobatto distribution on the sides, up to interpolation degree 18. Such points have the best Lebesgue constants among the families of symmetric points used so far in the framework of triangular spectral elements.

[1]  Francis Loth,et al.  Spectral Element Methods for , 2002 .

[2]  Len Bos Bounding the Lebesgue function for Lagrange interpolation in a simplex , 1983 .

[3]  Alvise Sommariva,et al.  Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..

[4]  David A. Kopriva,et al.  Spectral Element Methods , 2009 .

[5]  Len Bos,et al.  On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .

[6]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[7]  H. D. Ursell,et al.  Cours d'Analyse. Tome II: Topologie , 1966 .

[8]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[9]  M. Roth,et al.  Nodal configurations and voronoi tessellations for triangular spectral elements , 2005 .

[10]  L. Bos,et al.  Weakly Admissible Meshes and Discrete Extremal Sets , 2010 .

[11]  Charles Hermite,et al.  Cours d'analyse , 1873 .

[12]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[13]  Jean-Paul Calvi,et al.  Uniform approximation by discrete least squares polynomials , 2008, J. Approx. Theory.

[14]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[15]  Alvise Sommariva,et al.  Least-squares polynomial approximation on weakly admissible meshes: Disk and triangle , 2010, J. Comput. Appl. Math..

[16]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[17]  Francesca Rapetti,et al.  Spectral element methods on unstructured meshes: which interpolation points? , 2010, Numerical Algorithms.

[18]  Mark A. Taylor,et al.  Tensor product Gauss-Lobatto points are Fekete points for the cube , 2001, Math. Comput..

[19]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[20]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[23]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[24]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .

[25]  Alvise Sommariva,et al.  Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..

[26]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[27]  H. D. Ursell Cours d’Analyse. Tome II: Topologie. By G. Choquet. Pp. xi + 310. 38f. (Masson et Cie, Paris) , 1966 .

[28]  Laboaratory J.-A. Dieudonn Spectral element methods on triangles and quadrilaterals : comparisons and applications , 2004 .

[29]  Alvise Sommariva,et al.  Computing Fekete and Lebesgue points: Simplex, square, disk , 2012, J. Comput. Appl. Math..

[30]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[31]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[32]  Wilhelm Heinrichs,et al.  Improved Lebesgue constants on the triangle , 2005 .

[33]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[34]  Paul Fischer,et al.  High-Order Methods for Incompressible Fluid Flow: Index , 2002 .

[35]  John P. Boyd,et al.  A numerical comparison of seven grids for polynomial interpolation on the interval , 1999 .

[36]  Len Bos,et al.  On the spacing of Fekete points for a sphere, ball or simplex , 2008 .

[37]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[38]  Claus-Dieter Munz,et al.  Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..

[39]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[40]  Chi-Kwong Li,et al.  Least-squares approximation by elements from matrix orbits achieved by gradient flows on compact lie groups , 2008, Math. Comput..