On the generation of symmetric Lebesgue-like points in the triangle
暂无分享,去创建一个
[1] Francis Loth,et al. Spectral Element Methods for , 2002 .
[2] Len Bos. Bounding the Lebesgue function for Lagrange interpolation in a simplex , 1983 .
[3] Alvise Sommariva,et al. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..
[4] David A. Kopriva,et al. Spectral Element Methods , 2009 .
[5] Len Bos,et al. On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .
[6] Raytcho D. Lazarov,et al. Higher-order finite element methods , 2005, Math. Comput..
[7] H. D. Ursell,et al. Cours d'Analyse. Tome II: Topologie , 1966 .
[8] Alvise Sommariva,et al. Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..
[9] M. Roth,et al. Nodal configurations and voronoi tessellations for triangular spectral elements , 2005 .
[10] L. Bos,et al. Weakly Admissible Meshes and Discrete Extremal Sets , 2010 .
[11] Charles Hermite,et al. Cours d'analyse , 1873 .
[12] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[13] Jean-Paul Calvi,et al. Uniform approximation by discrete least squares polynomials , 2008, J. Approx. Theory.
[14] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[15] Alvise Sommariva,et al. Least-squares polynomial approximation on weakly admissible meshes: Disk and triangle , 2010, J. Comput. Appl. Math..
[16] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[17] Francesca Rapetti,et al. Spectral element methods on unstructured meshes: which interpolation points? , 2010, Numerical Algorithms.
[18] Mark A. Taylor,et al. Tensor product Gauss-Lobatto points are Fekete points for the cube , 2001, Math. Comput..
[19] Ernst Rank,et al. The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .
[20] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[21] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[22] Claudio Canuto,et al. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .
[23] R. Storn,et al. Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .
[24] Ivo Babuška,et al. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .
[25] Alvise Sommariva,et al. Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..
[26] Joel Ferziger,et al. Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .
[27] H. D. Ursell. Cours d’Analyse. Tome II: Topologie. By G. Choquet. Pp. xi + 310. 38f. (Masson et Cie, Paris) , 1966 .
[28] Laboaratory J.-A. Dieudonn. Spectral element methods on triangles and quadrilaterals : comparisons and applications , 2004 .
[29] Alvise Sommariva,et al. Computing Fekete and Lebesgue points: Simplex, square, disk , 2012, J. Comput. Appl. Math..
[30] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[31] Jeffrey C. Lagarias,et al. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..
[32] Wilhelm Heinrichs,et al. Improved Lebesgue constants on the triangle , 2005 .
[33] Tim Warburton,et al. An explicit construction of interpolation nodes on the simplex , 2007 .
[34] Paul Fischer,et al. High-Order Methods for Incompressible Fluid Flow: Index , 2002 .
[35] John P. Boyd,et al. A numerical comparison of seven grids for polynomial interpolation on the interval , 1999 .
[36] Len Bos,et al. On the spacing of Fekete points for a sphere, ball or simplex , 2008 .
[37] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[38] Claus-Dieter Munz,et al. Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..
[39] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[40] Chi-Kwong Li,et al. Least-squares approximation by elements from matrix orbits achieved by gradient flows on compact lie groups , 2008, Math. Comput..