The resolution complexity of random graph k-colorability

We consider the resolution proof complexity of propositional formulas which encode random instances of graph k-colorability. We obtain a tradeoff between the graph density and the resolution proof complexity. For random graphs with linearly many edges we obtain linear-exponential lower bounds on the size of resolution refutations. For random graphs with n vertices and any @e>0, we obtain a lower-bound tradeoff between graph density and refutation size that implies subexponential lower bounds of the form 2^n^^^@d for some @d>0 for non-k-colorability proofs of graphs with n vertices and O(n^3^/^2^-^1^/^k^-^@e) edges. We obtain sharper lower bounds for Davis-Putnam-DPLL proofs and for proofs in a system considered by McDiarmid. These proof complexity bounds imply that many natural algorithms for k-coloring or k-colorability have essentially the same exponential tradeoff lower bounds on their running times. We also show that very simple algorithms for k-colorability have upper bounds on their running times that are qualitatively similar to the lower bounds as a function of the graph density.

[1]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..

[2]  JOEL FRIEDMAN,et al.  Recognizing More Unsatisfiable Random k-SAT Instances Efficiently , 2005, SIAM J. Comput..

[3]  David Eppstein,et al.  3-coloring in time 0(1.3446/sup n/): a no-MIS algorithm , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[4]  Michael Molloy,et al.  The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  David Eppstein,et al.  3-Coloring in Time O(1.3289^n) , 2000, J. Algorithms.

[6]  Cristopher Moore,et al.  Almost all graphs with average degree 4 are 3-colorable , 2002, STOC '02.

[7]  Herbert S. Wilf,et al.  Backtrack: An O(1) Expected Time Algorithm for the Graph Coloring Problem , 1984, Inf. Process. Lett..

[8]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[9]  Amin Coja-Oghlan The Lovász Number of Random Graphs , 2003, RANDOM-APPROX.

[10]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[11]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[12]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[13]  Liat Ein-Dor,et al.  The dynamics of proving uncolourability of large random graphs: I. Symmetric colouring heuristic , 2003 .

[14]  D. Achlioptas,et al.  A sharp threshold for k-colorability , 1999 .

[15]  B. Bollobás The evolution of random graphs , 1984 .

[16]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[17]  Joseph C. Culberson,et al.  Frozen development in graph coloring , 2001, Theor. Comput. Sci..

[18]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[19]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[20]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[21]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[22]  Edward A. Bender,et al.  A Theoretical Analysis of Backtracking in the Graph Coloring Problem , 1985, J. Algorithms.

[23]  D. Welsh,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .

[24]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[25]  Joel Friedman,et al.  Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently , 2001, ICALP.

[26]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[27]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[28]  Riccardo Zecchina,et al.  Constraint Satisfaction by Survey Propagation , 2002, Computational Complexity and Statistical Physics.

[29]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[30]  Alexander Kurz,et al.  On institutions for modular coalgebraic specifications , 2002, Theor. Comput. Sci..

[31]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[32]  V. Vu,et al.  Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time , 2000, J. Comb. Optim..

[33]  Thomas Stützle,et al.  An application of Iterated Local Search to Graph Coloring , 2002 .

[34]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[35]  Michael Krivelevich,et al.  Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods , 2001, STACS.

[36]  David Eppstein,et al.  3-Coloring in time O(1.3446n): A no-MIS Algorithm , 1995, Electron. Colloquium Comput. Complex..

[37]  H. Levesque,et al.  The resolution complexity of constraint satisfaction , 2002 .

[38]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[39]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[40]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[41]  Cristopher Moore,et al.  How Much Backtracking Does It Take to Color Random Graphs? Rigorous Results on Heavy Tails , 2004, CP.

[42]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[43]  A. Naor,et al.  The two possible values of the chromatic number of a random graph , 2005 .

[44]  Michael Molloy,et al.  Almost all graphs with 2.522 n edges are not 3-colorable , 1999, Electron. J. Comb..

[45]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[46]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..