Comparative study of motion detection methods for video surveillance systems

Abstract. The objective of this study is to compare several change detection methods for a monostatic camera and identify the best method for different complex environments and backgrounds in indoor and outdoor scenes. To this end, we used the CDnet video dataset as a benchmark that consists of many challenging problems, ranging from basic simple scenes to complex scenes affected by bad weather and dynamic backgrounds. Twelve change detection methods, ranging from simple temporal differencing to more sophisticated methods, were tested and several performance metrics were used to precisely evaluate the results. Because most of the considered methods have not previously been evaluated on this recent large scale dataset, this work compares these methods to fill a lack in the literature, and thus this evaluation joins as complementary compared with the previous comparative evaluations. Our experimental results show that there is no perfect method for all challenging cases; each method performs well in certain cases and fails in others. However, this study enables the user to identify the most suitable method for his or her needs.

[1]  S. Bianco,et al.  How Far Can You Get By Combining Change Detection Algorithms? , 2015, ICIAP.

[2]  Serhat Selcuk Bucak,et al.  Incremental Non-negative Matrix Factorization for Dynamic Background Modelling , 2007, PRIS.

[3]  Thierry Chateau,et al.  Vehicle trajectories evaluation by static video sensors , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[4]  Oncel Tuzel,et al.  Bayesian background modeling for foreground detection , 2005, VSSN@MM.

[5]  Dale Schuurmans,et al.  Real-Time Discriminative Background Subtraction , 2011, IEEE Transactions on Image Processing.

[6]  Deepu Rajan,et al.  Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey , 2016, IEEE Transactions on Intelligent Transportation Systems.

[7]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[8]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[9]  Fatih Murat Porikli,et al.  Multiplicative Background-Foreground Estimation Under Uncontrolled Illumination using Intrinsic Images , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[10]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Soon Ki Jung,et al.  Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[12]  David Suter,et al.  A consensus-based method for tracking: Modelling background scenario and foreground appearance , 2007, Pattern Recognit..

[13]  Guillaume-Alexandre Bilodeau,et al.  Flexible Background Subtraction with Self-Balanced Local Sensitivity , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[14]  Jenny Benois-Pineau,et al.  Gaussian mixture classification for moving object detection in video surveillance environment , 2005, IEEE International Conference on Image Processing 2005.

[15]  Yu Chen,et al.  Fast Robust Eigen-Background Updating for Foreground Detection , 2006, 2006 International Conference on Image Processing.

[16]  Azriel Rosenfeld,et al.  Detection and location of people in video images using adaptive fusion of color and edge information , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[18]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  Mubarak Shah,et al.  Automatically Tuning Background Subtraction Parameters using Particle Swarm Optimization , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[20]  Thierry Bouwmans,et al.  Background Subtraction For Visual Surveillance: A Fuzzy Approach , 2012 .

[21]  Dong Liang,et al.  Improvements and Experiments of a Compact Statistical Background Model , 2014, ArXiv.

[22]  Jinhui Tang,et al.  Joint Video Frame Set Division and Low-Rank Decomposition for Background Subtraction , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Tieniu Tan,et al.  Foreground Object Detection Using Top-Down Information Based on EM Framework , 2012, IEEE Transactions on Image Processing.

[25]  Hélène Laurent,et al.  Comparative study of background subtraction algorithms , 2010, J. Electronic Imaging.

[26]  Alexandre Bernardino,et al.  Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition , 2013, 2013 IEEE International Conference on Computer Vision.

[27]  Lucia Maddalena,et al.  Stopped Object Detection by Learning Foreground Model in Videos , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[28]  Borko Furht,et al.  Neural Network Approach to Background Modeling for Video Object Segmentation , 2007, IEEE Transactions on Neural Networks.

[29]  David Suter,et al.  A re-evaluation of mixture of Gaussian background modeling [video signal processing applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[30]  Vittorio Murino,et al.  Background Subtraction with Adaptive Spatio-Temporal Neighborhood Analysis , 2008, VISAPP.

[31]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[32]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[33]  David Suter,et al.  Background Subtraction Based on a Robust Consensus Method , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[34]  Thierry Bouwmans,et al.  Foreground detection via robust low rank matrix factorization including spatial constraint with Iterative reweighted regression , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[35]  Thierry Chateau,et al.  A Benchmark Dataset for Outdoor Foreground/Background Extraction , 2012, ACCV Workshops.

[36]  Bin Wang,et al.  A Fast Self-Tuning Background Subtraction Algorithm , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[37]  Guillaume-Alexandre Bilodeau,et al.  Background subtraction based on Local Shape , 2012, ArXiv.

[38]  Xiqun Lu,et al.  A multiscale spatio-temporal background model for motion detection , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[39]  Baoqing Li,et al.  Improving video foreground segmentation with an object-like pool , 2015, J. Electronic Imaging.

[40]  Mario I. Chacon-Murguia,et al.  Fuzzy-neural self-adapting background modeling with automatic motion analysis for dynamic object detection , 2015 .

[41]  Mehmet Celenk,et al.  Change Detection and Object Tracking in IR Surveillance Video , 2007, 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System.

[42]  Bohyung Han,et al.  SEQUENTIAL KERNEL DENSITY APPROXIMATION THROUGH MODE PROPAGATION: APPLICATIONS TO BACKGROUND MODELING , 2004 .

[43]  Zhiyuan Wang Hardware implementation for a hand recognition system on FPGA , 2015, 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication.

[44]  Marc Van Droogenbroeck,et al.  Background subtraction: Experiments and improvements for ViBe , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[45]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[46]  Nuno Vasconcelos,et al.  Spatiotemporal Saliency in Dynamic Scenes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[48]  Zhenjiang Miao,et al.  Background Subtraction Using Running Gaussian Average and Frame Difference , 2007, ICEC.

[49]  Roberto Manduchi,et al.  Fast image motion segmentation for surveillance applications , 2011, Image Vis. Comput..

[50]  Chng Eng Siong,et al.  Foreground motion detection by difference-based spatial temporal entropy image , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[51]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[52]  Sidney S. Fels,et al.  Evaluation of Background Subtraction Algorithms with Post-Processing , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[53]  Tiejun Huang,et al.  Selective Eigenbackground for Background Modeling and Subtraction in Crowded Scenes , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[54]  Huiyu Zhou,et al.  Spatial mixture of Gaussians for dynamic background modelling , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[55]  Antoine Vacavant,et al.  A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos , 2014, Comput. Vis. Image Underst..

[56]  Luis Salgado,et al.  Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers , 2014, J. Vis. Commun. Image Represent..

[57]  Suman K. Mitra,et al.  Background Subtraction in Videos using Bayesian Learning with Motion Information , 2008, BMVC.

[58]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Marc Van Droogenbroeck,et al.  Overview and Benchmarking of Motion Detection Methods , 2014 .

[60]  Vittorio Murino,et al.  Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review , 2010, EURASIP J. Adv. Signal Process..

[61]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[63]  Xiaoning Zhang,et al.  Moving Vehicle Detection Based on Union of Three-Frame Difference , 2012 .

[64]  Lucia Maddalena,et al.  The 3dSOBS+ algorithm for moving object detection , 2014, Comput. Vis. Image Underst..

[65]  Itaru Kitahara,et al.  Robust Foreground Extraction Technique Using Gaussian Family Model and Multiple Thresholds , 2007, ACCV.

[66]  Berthold K. P. Horn,et al.  "Determining optical flow": A Retrospective , 1993, Artif. Intell..

[67]  Manoranjan Paul,et al.  Human detection in surveillance videos and its applications - a review , 2013, EURASIP J. Adv. Signal Process..

[68]  Teddy Ko,et al.  A survey on behavior analysis in video surveillance for homeland security applications , 2008, 2008 37th IEEE Applied Imagery Pattern Recognition Workshop.

[69]  Nurul Arif Setiawan,et al.  Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction , 2006, ICAT.

[70]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[71]  A. Lai,et al.  A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[72]  D. Manjula Adaptive Background subtraction in Dynamic Environments Using Fuzzy Logic , 2010 .

[73]  Dit-Yan Yeung,et al.  Bayesian Robust Matrix Factorization for Image and Video Processing , 2013, 2013 IEEE International Conference on Computer Vision.

[74]  James Orwell,et al.  Adaptive eigen-backgrounds for object detection , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[75]  Dana H. Ballard,et al.  Novelty detection using growing neural gas for visuo-spatial memory , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[76]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[77]  Theodora A. Varvarigou,et al.  An architecture for a self configurable video supervision , 2008, AREA '08.

[78]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[79]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[80]  RiveraMariano,et al.  Change detection by probabilistic segmentation from monocular view , 2014 .

[81]  Plamen Angelov,et al.  Real-time novelty detection in video using background subtraction techniques: State of the art a practical review , 2014, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[82]  Zulaikha Kadim,et al.  Extraction of Moving Objects Using Frame Differencing, Ghost and Shadow Removal , 2014, 2014 5th International Conference on Intelligent Systems, Modelling and Simulation.

[83]  Ye-peng Guan,et al.  Motion foreground detection based on wavelet transformation and color ratio difference , 2010, 2010 3rd International Congress on Image and Signal Processing.

[84]  Jaime Gallego Vila Parametric region-based foreround segmentation in planar and multi-view sequences , 2013 .

[85]  P. Wayne Power,et al.  Understanding Background Mixture Models for Foreground Segmentation , 2002 .

[86]  Mansour Moniri,et al.  Spectral-360: A Physics-Based Technique for Change Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[87]  P. Bouthemy,et al.  Recovery of moving object masks in an image sequence using local spatiotemporal contextual information , 1993 .

[88]  Xiaoqin Zhang,et al.  Robust foreground segmentation based on two effective background models , 2008, MIR '08.

[89]  Konrad Schindler,et al.  Smooth Foreground-Background Segmentation for Video Processing , 2006, ACCV.

[90]  Soon Ki Jung,et al.  Robust background subtraction to global illumination changes via multiple features-based online robust principal components analysis with Markov random field , 2015, J. Electronic Imaging.

[91]  Bob Zhang,et al.  Background modeling methods in video analysis: A review and comparative evaluation , 2016, CAAI Trans. Intell. Technol..

[92]  Sambit Bakshi,et al.  An Evaluation of Background Subtraction for Object Detection Vis-a-Vis Mitigating Challenging Scenarios , 2016, IEEE Access.

[93]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  Lionel Lacassagne,et al.  Implementing motion Markov detection on general purpose processor and associative mesh , 2005, Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05).

[95]  Rubén Heras Evangelio,et al.  Complementary background models for the detection of static and moving objects in crowded environments , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[96]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[97]  Thierry Chateau,et al.  A benchmark for Background Subtraction Algorithms in monocular vision: A comparative study , 2010, 2010 2nd International Conference on Image Processing Theory, Tools and Applications.

[98]  Xiaogang Wang,et al.  Background Subtraction via Robust Dictionary Learning , 2011, EURASIP J. Image Video Process..

[99]  Atsushi Shimada,et al.  Evaluation report of integrated background modeling based on spatio-temporal features , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[100]  Alan F. Murray,et al.  International Joint Conference on Neural Networks , 1993 .

[101]  Xu Jian,et al.  Background subtraction based on a combination of texture, color and intensity , 2008, 2008 9th International Conference on Signal Processing.

[102]  Simone Calderara,et al.  Reliable background suppression for complex scenes , 2006, VSSN '06.

[103]  Mario Ignacio Chacon Murguia,et al.  Fuzzy-neural self-adapting background modeling with automatic motion analysis for dynamic object detection , 2015, Applied Soft Computing.

[104]  Du-Ming Tsai,et al.  Independent Component Analysis-Based Background Subtraction for Indoor Surveillance , 2009, IEEE Transactions on Image Processing.

[105]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[106]  Fatih Murat Porikli,et al.  A Novel Video Dataset for Change Detection Benchmarking , 2014, IEEE Transactions on Image Processing.

[107]  Robert B. Fisher Change Detection in Color Images , 1999 .

[108]  Plamen Angelov,et al.  Vision Based Human Activity Recognition: A Review , 2016, UKCI.

[109]  Robert B. Fisher,et al.  A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage , 2014, Ecol. Informatics.

[110]  Andrzej Cichocki,et al.  Total Variation Regularized Tensor RPCA for Background Subtraction From Compressive Measurements , 2015, IEEE Transactions on Image Processing.

[111]  Jake K. Aggarwal,et al.  Extraction of moving object descriptions via differencing , 1982, Comput. Graph. Image Process..

[112]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[113]  Jake K. Aggarwal,et al.  Segmentation through the detection of changes due to motion , 1979 .

[114]  L. Wixson Detecting Salient Motion by Accumulating Directionally-Consistent Flow , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[115]  Atsushi Shimada,et al.  Background model based on intensity change similarity among pixels , 2013, The 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision.

[116]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[117]  Thierry Bouwmans,et al.  Subspace Learning for Background Modeling: A Survey , 2009 .

[118]  Thierry Bouwmans,et al.  Type-2 Fuzzy Mixture of Gaussians Model: Application to Background Modeling , 2008, ISVC.

[119]  Dubravko Culibrk,et al.  Efficient wavelet based detection of moving objects , 2009, 2009 16th International Conference on Digital Signal Processing.

[120]  Fergyanto E. Gunawan,et al.  Evaluation of Recursive Background Subtraction Algorithms for Real-Time Passenger Counting at Bus Rapid Transit System , 2015 .

[121]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[122]  Mark E Hallenbeck,et al.  Extracting Roadway Background Image , 2006 .

[123]  Mario Ignacio Chacon Murguia,et al.  Simplified SOM-neural model for video segmentation of moving objects , 2009, 2009 International Joint Conference on Neural Networks.

[124]  KimKyungnam,et al.  Real-time foreground-background segmentation using codebook model , 2005 .

[125]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[126]  Xiang Ma,et al.  Learning a background model for change detection , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[127]  HongJiang Zhang,et al.  Detecting motion object by spatio-temporal entropy , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[128]  Lucia Maddalena,et al.  The SOBS algorithm: What are the limits? , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[129]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[130]  Massimo De Gregorio,et al.  A WiSARD-Based Approach to CDnet , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[131]  Jean Meunier,et al.  Comparison study between different automatic threshold algorithms for motion detection , 2015, 2015 4th International Conference on Electrical Engineering (ICEE).

[132]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[133]  Bohyung Han,et al.  Density-Based Multifeature Background Subtraction with Support Vector Machine , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[134]  Antoine Manzanera,et al.  A New Hybrid differential filter for Motion Detection , 2004, ICCVG.

[135]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[136]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[137]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[138]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[139]  Lionel Lacassagne,et al.  High performance motion detection: some trends toward new embedded architectures for vision systems , 2008, Journal of Real-Time Image Processing.

[140]  Jun Li,et al.  A video-based real-time vehicle detection method by classified background learning , 2007 .

[141]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[142]  Jin Young Choi,et al.  Intelligent visual surveillance — A survey , 2010 .

[143]  Mariano Rivera,et al.  Change detection by probabilistic segmentation from monocular view , 2013, Machine Vision and Applications.

[144]  Vittorio Murino,et al.  A spatial sampling mechanism for effective background subtraction , 2007, VISAPP.

[145]  Antoine Manzanera,et al.  A new motion detection algorithm based on Sigma-Delta background estimation , 2007, Pattern Recognit. Lett..

[146]  Chongzhao Han,et al.  A Background Reconstruction for Dynamic Scenes , 2006, 2006 9th International Conference on Information Fusion.

[147]  Xiaoyan Wang,et al.  Three-Frame Difference Algorithm Research Based on Mathematical Morphology , 2012 .

[148]  Rainer Stiefelhagen,et al.  Improving foreground segmentations with probabilistic superpixel Markov random fields , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[149]  Massimo De Gregorio,et al.  Change Detection with Weightless Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[150]  Edward Y. Chang,et al.  Proceedings of the third ACM international workshop on Video surveillance & sensor networks , 2005 .

[151]  Janne Heikkilä,et al.  A real-time system for monitoring of cyclists and pedestrians , 2004, Image Vis. Comput..

[152]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[153]  Tao Xiang,et al.  Background Subtraction with Dirichlet Processes , 2012, ECCV.

[154]  Hoshang Kolivand,et al.  Background subtraction methods in video streams: A review , 2015, 2015 4th International Conference on Interactive Digital Media (ICIDM).

[155]  Qi Zhang,et al.  Motion saliency detection based on temporal difference , 2015, J. Electronic Imaging.

[156]  Narciso García,et al.  Detection of stationary foreground objects: A survey , 2016, Comput. Vis. Image Underst..

[157]  M. Sigari,et al.  Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application , 2008 .

[158]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[159]  Nikolaos F. Matsatsinis,et al.  Student-t background modeling for persons' fall detection through visual cues , 2012, 2012 13th International Workshop on Image Analysis for Multimedia Interactive Services.

[160]  Itaru Kitahara,et al.  Robust Silhouette Extraction Technique Using Background Subtraction , 2007 .

[161]  A. Senior,et al.  Performance Evaluation of Surveillance Systems Under Varying Conditions , 2004 .

[162]  Larry S. Davis,et al.  W4S: A real-time system detecting and tracking people in 2 1/2D , 1998, ECCV.

[163]  Quming Zhou,et al.  Tracking and Classifying Moving Objects from Video , 2001 .

[164]  Joachim M. Buhmann,et al.  Topology free hidden Markov models: application to background modeling , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[165]  Dongxiang Zhou,et al.  Modified GMM background modeling and optical flow for detection of moving objects , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[166]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[167]  Meng-Chou Chang,et al.  Motion Detection by Using Entropy Image and Adaptive State-Labeling Technique , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[168]  Matteo Matteucci,et al.  A revaluation of frame difference in fast and robust motion detection , 2006, VSSN '06.

[169]  Thierry Bouwmans,et al.  A Fuzzy Background Modeling Approach for Motion Detection in Dynamic Backgrounds , 2012, MMSP 2012.

[170]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[171]  Joachim M. Buhmann,et al.  Topology Free Hidden Markov Models: Application to Background Modeling , 2001, ICCV.

[172]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[173]  Luca Iocchi,et al.  ARGOS-Venice Boat Classification , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[174]  Fan Zhang,et al.  Background modeling for dynamic scenes using tensor decomposition , 2016, 2016 6th International Conference on Electronics Information and Emergency Communication (ICEIEC).

[175]  Alice Caplier,et al.  Real-Time Implementations of an MRF-based Motion Detection Algorithm , 1998, Real Time Imaging.

[176]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[177]  Rubén Heras Evangelio,et al.  Splitting Gaussians in Mixture Models , 2012, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance.

[178]  Wen-xiong Kang,et al.  An adaptive background reconstruction algorithm based on inertial filtering , 2009 .

[179]  Rui Wang,et al.  Static and Moving Object Detection Using Flux Tensor with Split Gaussian Models , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[180]  Nikolay Kostov,et al.  Investigation of mixture of Gaussians method for background subtraction in traffic surveillance , 2013, Int. J. Reason. based Intell. Syst..

[181]  Yingying Zhao,et al.  Background extraction algorithm base on Partition Weighed Histogram , 2012, 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content.

[182]  Alamelu Nachiappan,et al.  Euclidean Distance Based Color Image Segmentation of Abnormality Detection from Pseudo Color Thermographs , 2010 .