Structures, spectra, and electronic properties of halide-water pentamers and hexamers, X−(H2O)5,6 (X=F,Cl,Br,I): Ab initio study

Various structures of halide-water pentamers and hexamers have been investigated using extensive ab initio calculations. Then, we compare the structures, spectra, and electronic properties of the hydrated fluoride, chloride, bromide, and iodide systems. Although some of the fluoride and iodide systems have been investigated earlier, we have carried out more accurate calculations on an enlarged conformational ensemble. The chloride-, bromide-, and iodide-water pentamers and hexamers behave somewhat similarly, but differently from the fluoride-water pentamer and hexamer. Fluoride-water clusters show semisurface (or semi-internal) structures, while chloride-, bromide-, and iodide-water clusters show surface structures. We substantiate our findings by evaluating various electronic properties such as ionization potentials, natural bond orbital charges, dipole moments, and charge-transfer-to-solvent energies, as well as vibrational frequencies of the low-energy halide-water pentamers and hexamers.

[1]  Jongseob Kim,et al.  Vibrational spectra and electron detachment energy of the anionic water hexamer , 2000 .

[2]  M. Johnson,et al.  Vibrational spectrum of I−(H2O) , 1996 .

[3]  Kwang Soo Kim,et al.  Harmonic vibrational frequencies of the water monomer and dimer: Comparison of various levels of ab initio theory , 1995 .

[4]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[5]  N. Kestner,et al.  Microscopic Study of Fluoride-Water Clusters , 1994 .

[6]  Jongseob Kim,et al.  Photoswitch and nonlinear optical switch: Theoretical studies on 1,2-bis-(3-thienyl)-ethene derivatives , 1999 .

[7]  S. Xantheas,et al.  Critical Study of Fluoride−Water Interactions , 1996 .

[8]  Han Myoung Lee,et al.  Aqua–potassium(I) complexes: Ab initio study , 1999 .

[9]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[10]  E. Marcos,et al.  Theoretical Study of the Microsolvation of the Bromide Anion in Water, Methanol, and Acetonitrile: Ion−Solvent vs Solvent−Solvent Interactions , 2000 .

[11]  Marvin Johnson,et al.  Precursor of the Iaq− charge‐transfer‐to‐solvent (CTTS) band in I−⋅(H2O)n clusters , 1996 .

[12]  J. V. Coe Fundamental properties of bulk water from cluster ion data , 2001 .

[13]  Jongseob Kim,et al.  Charge transfer to solvent (CTTS) energies of small X−(H2O)n=1–4 (X=F, Cl, Br, I) clusters: Ab initio study , 2000 .

[14]  N. Kestner,et al.  Energy‐structure relationships for microscopic solvation of anions in water clusters , 1994 .

[15]  B. C. Garrett,et al.  Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations , 1993 .

[16]  M. Arshadi,et al.  Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions , 1970 .

[17]  Kwang S. Kim,et al.  CATION AFFINITIES OF CYCLOHEXADEPSIPEPTIDE : AB INITIO STUDY , 1999 .

[18]  P. Jungwirth,et al.  Relaxation of chlorine anions solvated in small water clusters upon electron photodetachment. , 1998 .

[19]  Jerzy Leszczynski,et al.  Properties and nature of interactions in Cl−(H2O)nn=1,6 clusters: a theoretical study , 2000 .

[20]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[21]  K. Jordan,et al.  Resonant ion-dip infrared spectroscopy of benzene–(water)9: Expanding the cube , 2000 .

[22]  Jongseob Kim,et al.  Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study , 1999 .

[23]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[24]  Iwao Watanabe,et al.  Vertical ionization potentials and CTTS energies for anions in water and acetonitrile , 1995 .

[25]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[26]  M. Berkowitz,et al.  Many-body effects in molecular dynamics simulations of Na +(H2O)n and Cl-(H2O) n clusters , 1991 .

[27]  Gil Markovich,et al.  Photoelectron spectroscopy of Cl−, Br−, and I− solvated in water clusters , 1994 .

[28]  Max L. Berkowitz,et al.  Structures of Cl-(H2O)n and F -(H2O)n (n=2,3,..., 15) clusters. Molecular dynamics computer simulations , 1994 .

[29]  Marvin Johnson,et al.  An infrared study of the competition between hydrogen-bond networking and ionic solvation: Halide-dependent distortions of the water trimer in the X−⋅(H2O)3, (X=Cl, Br, I) systems , 1999 .

[30]  K. Yoshikawa,et al.  Electric field induced lateral instability in a simple autocatalytic front , 1999 .

[31]  S. Xantheas,et al.  Microscopic hydration of the fluoride anion , 1999 .

[32]  Alison V. Davis,et al.  Time-resolved dynamics of charge transfer to solvent states in solvated iodide clusters , 2000 .

[33]  Kwang Soo Kim,et al.  NOVEL STRUCTURES FOR THE EXCESS ELECTRON STATE OF THE WATER HEXAMER AND THE INTERACTION FORCES GOVERNING THE STRUCTURES , 1997 .

[34]  M. Beyer,et al.  Generation of hydrated iodide clusters I−(H2O)n by laser vaporization, their fragmentation and reactions with HCl , 1998 .

[35]  Han Myoung Lee,et al.  Structures and spectra of iodide-water clusters I-(H2O)(n=1-6): An ab initio study , 2001 .

[36]  Marvin Johnson,et al.  VIBRATIONAL SPECTROSCOPY OF SMALL BR-.(H2O)N AND I-.(H2O)N CLUSTERS : INFRARED CHARACTERIZATION OF THE IONIC HYDROGEN BOND , 1998 .

[37]  Stephen E. Bradforth,et al.  The ejection distribution of solvated electrons generated by the one-photon photodetachment of aqueous I− and two-photon ionization of the solvent , 2000 .