Effect of Solvent Assisted Linker Exchange (SALE) and De Novo Synthetic Routes on CO_2 Uptake and Fixation by Mixed-Linker Zeolitic Imidazolate Frameworks

[1]  Yuel W. Abraha,et al.  De novo syntheses of multi-linker Zn- and Co-based ZIFs with application in CO2 fixation , 2022, Microporous and Mesoporous Materials.

[2]  Yuel W. Abraha,et al.  Scalable synthesis of mixed-linker (Zn) ZIFs and their application in CO_2 adsorption and fixation , 2022, Journal of Porous Materials.

[3]  Ryan P. Lively,et al.  How Reproducible are Surface Areas Calculated from the BET Equation? , 2021, Advanced materials.

[4]  J. Niemantsverdriet,et al.  Correction to “Optimized CO2 Capture of the Zeolitic Imidazolate Framework ZIF-8 Modified by Solvent-Assisted Ligand Exchange” , 2021, ACS omega.

[5]  J. Silvestre-Albero,et al.  Chlorination of a Zeolitic-Imidazolate Framework Tunes Packing and van der Waals Interaction of Carbon Dioxide for Optimized Adsorptive Separation. , 2021, Journal of the American Chemical Society.

[6]  Athanassios D. Katsenis,et al.  Linker Substituents Control the Thermodynamic Stability in Metal-Organic Frameworks. , 2020, Journal of the American Chemical Society.

[7]  Xiong Peng,et al.  Bifunctional metal-doped ZIF-8: A highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition , 2020 .

[8]  Lijing Gao,et al.  Pyridyl Ionic Liquid Functionalized ZIF-90 for Catalytic Conversion of CO2 into Cyclic Carbonates , 2020, Catalysis Letters.

[9]  E. A. Bulanova,et al.  MW synthesis of ZIF-65 with a hierarchical porous structure , 2020 .

[10]  B. Saha,et al.  Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO2 Utilization , 2020, Energies.

[11]  Chih-Wei Tsai,et al.  Computational study of ZIF-8 analogues with electron donating and withdrawing groups for CO2 adsorption , 2019, Microporous and Mesoporous Materials.

[12]  Xiong Peng,et al.  Morphology Control Synthesis of ZIF‐8 as Highly Efficient Catalyst for the Cycloaddition of CO2 to Cyclic Carbonate , 2019, ChemCatChem.

[13]  O. Yaghi,et al.  Carbon capture and conversion using metal-organic frameworks and MOF-based materials. , 2019, Chemical Society reviews.

[14]  T. C. Johnstone,et al.  Improving the Global Electrophilicity Index (GEI) as a Measure of Lewis Acidity. , 2018, Inorganic chemistry.

[15]  François-Xavier Coudert,et al.  Impacts of the Imidazolate Linker Substitution (CH3, Cl, or Br) on the Structural and Adsorptive Properties of ZIF-8 , 2018, The Journal of Physical Chemistry C.

[16]  Jaheon Kim,et al.  Porosity Properties of the Conformers of Sodalite-like Zeolitic Imidazolate Frameworks. , 2018, Journal of the American Chemical Society.

[17]  J. Niemantsverdriet,et al.  Enhanced CO2 adsorption in nano-ZIF-8 modified by solvent assisted ligand exchange , 2018 .

[18]  Dae-Won Park,et al.  A room temperature synthesizable zeolitic imidazolium framework catalyst for the solvent-free synthesis of cyclic carbonates , 2018 .

[19]  Yi-Feng Lin,et al.  Bifunctional ZIF-78 heterogeneous catalyst with dual Lewis acidic and basic sites for carbon dioxide fixation via cyclic carbonate synthesis , 2017 .

[20]  A. Matzger,et al.  Core-Shell Structures Arise Naturally During Ligand Exchange in Metal-Organic Frameworks. , 2017, Journal of the American Chemical Society.

[21]  F. Verpoort,et al.  1 Zn-doped ZIF-67 as catalyst for the CO2 fixation into cyclic carbonates , 2017 .

[22]  Junling Lu,et al.  Metal-Organic Framework-Templated Catalyst: Synergy in Multiple Sites for Catalytic CO2 Fixation. , 2017, ChemSusChem.

[23]  D. Sholl,et al.  Structural and Mechanistic Differences in Mixed-Linker Zeolitic Imidazolate Framework Synthesis by Solvent Assisted Linker Exchange and de Novo Routes. , 2017, Journal of the American Chemical Society.

[24]  Dae-Won Park,et al.  Cycloaddition of carbon dioxide with propylene oxide using zeolitic imidazolate framework ZIF-23 as a catalyst , 2017, Korean Journal of Chemical Engineering.

[25]  Yongchul G. Chung,et al.  Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides , 2017 .

[26]  Dae-Won Park,et al.  A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2 , 2016 .

[27]  Dae-Won Park,et al.  A highly efficient zeolitic imidazolate framework catalyst for the co-catalyst and solvent free synthesis of cyclic carbonates from CO2 , 2016 .

[28]  Dae-Won Park,et al.  A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates , 2016 .

[29]  Yulei Zhang,et al.  Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108 , 2016 .

[30]  Dae-Won Park,et al.  Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether , 2015 .

[31]  J. Hupp,et al.  Metal–Organic Framework-Based Catalysts: Chemical Fixation of CO2 with Epoxides Leading to Cyclic Organic Carbonates , 2015, Front. Energy Res..

[32]  Ryan P. Lively,et al.  Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. , 2014, ChemSusChem.

[33]  Weishen Yang,et al.  Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties. , 2014, Chemistry.

[34]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[35]  J. Hupp,et al.  Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. , 2014, Angewandte Chemie.

[36]  A. Russell,et al.  Review of recent advances in carbon dioxide separation and capture , 2013 .

[37]  Yujie Ban,et al.  Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology , 2013 .

[38]  B. Laird,et al.  A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks , 2012 .

[39]  J. Hupp,et al.  Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange , 2012 .

[40]  Y. Chabal,et al.  Tuning the gate opening pressure of Metal-Organic Frameworks (MOFs) for the selective separation of hydrocarbons. , 2012, Journal of the American Chemical Society.

[41]  Jing Liu,et al.  Effect of Functionalized Linker on CO2 Binding in Zeolitic Imidazolate Frameworks: Density Functional Theory Study , 2012 .

[42]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[43]  M. Trachtenberg,et al.  Highly selective CO2 capture by a flexible microporous metal-organic framework (MMOF) material. , 2010, Chemistry.

[44]  A. Fuchs,et al.  The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption , 2010, 1904.11921.

[45]  Omar K. Yaghi,et al.  A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. , 2010, Journal of the American Chemical Society.

[46]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[47]  S. Alavi,et al.  Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials , 2010 .

[48]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[49]  Joshua A. Plumley,et al.  Periodic trends and index of boron LEwis acidity. , 2009, The journal of physical chemistry. A.

[50]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[51]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[52]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.