Effects of thresholding in joint-transform correlation.

The joint-transform power spectrum of two identical objects can be represented as a one-dimensional sinusoidal grating modulated by a Fourier transform, and the correlation peaks can be regarded as the first-order diffraction of the grating. The peak intensity and the width are then determined by the aperture and the modulation of the grating. Based on this analysis, it is shown that dc blocking, hard clipping, or binarization of the power spectrum results in higher correlation peak intensity and a narrower peak width. Direct-current blocking is also found to be preferable if the input pattern to the correlator is corrupted by noise.

[1]  Francis T. S. Yu,et al.  A real-time programmable joint transform correlator , 1984 .

[2]  Francis T. S. Yu,et al.  Hard‐clipping joint transform correlator using a microchannel spatial light modulator , 1988 .

[3]  J. E. Rau Real-Time Complex Spatial Modulation , 1967 .

[4]  Bahram Javidi,et al.  Multiple Object Identification By Bipolar Joint Transform Correlation , 1988 .

[5]  Kristina M. Johnson,et al.  Joint transform correlator using an amorphous silicon ferroelectric liquid crystal spatial light modulator , 1990 .

[6]  Francis T. S. Yu,et al.  Binary phase only joint transform correlator , 1989 .

[7]  Jeffrey A. Davis,et al.  Effects of sampling and binarization in the output of the joint Fourier transform correlator , 1990 .

[8]  T. Iwaki,et al.  Optical pattern recognition of letters by a joint-transform correlator using a ferroelectric liquid-crystal spatial light modulator. , 1990, Optics letters.

[9]  Joseph L. Horner,et al.  1-F Binary Joint Transform Correlator. , 1990 .

[10]  Kristina M. Johnson,et al.  Ferroelectric Liquid Crystal Spatial Light Modulators , 1990, Optics & Photonics.

[11]  J. Goodman,et al.  A technique for optically convolving two functions. , 1966, Applied optics.

[12]  Kristina M. Johnson,et al.  Joint Transform Correlation Using An Amorphous Silicon Ferroelectric Liquid Crystal Spatial Light Modulator , 1990, Optics & Photonics.

[13]  J. E. Rau Detection of Differences in Real Distributions , 1966 .

[14]  Steven K. Rogers,et al.  New binarization techniques for joint transform correlation , 1990 .

[15]  D A Gregory,et al.  Effects of fringe binarization of multiobject joint transform correlation. , 1989, Applied optics.

[16]  D A Gregory,et al.  High-efficiency joint-transform correlator. , 1990, Optics letters.

[17]  Francis T. S. Yu,et al.  Applications Of Phase Conjugation To A Joint Transform Correlator , 1989, Other Conferences.

[18]  Francis T. S. Yu,et al.  Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator. , 1987, Applied optics.

[19]  Francis T. S. Yu,et al.  Digital optical architectures for multiple matrix multiplication , 1989 .

[20]  H Bartelt,et al.  Improving binary phase correlation filters using iterative techniques. , 1985, Applied optics.