Modeling the evolution of microtextured regions during α/β processing using the crystal plasticity finite element method

[1]  D. McDowell,et al.  Cyclic plasticity experiments and polycrystal plasticity modeling of three distinct Ti alloy microstructures , 2018 .

[2]  A. Rollett,et al.  Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model , 2017 .

[3]  T. Truster,et al.  Variational projection methods for gradient crystal plasticity using Lie algebras , 2017 .

[4]  He Yang,et al.  A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys , 2016 .

[5]  Somnath Ghosh,et al.  Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: Image-based model with experimental validation , 2016 .

[6]  S. Srivatsa,et al.  A dataset for the development, verification, and validation of microstructure-sensitive process models for near-alpha titanium alloys , 2016, Integrating Materials and Manufacturing Innovation.

[7]  M. Echlin,et al.  Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium , 2016 .

[8]  I. Beyerlein,et al.  Polycrystal Plasticity Simulation of Microtextured Titanium , 2016 .

[9]  S. Rokhlin,et al.  319. Icme of Microtexture Evolution in Dual Phase Titanium Alloys , 2016 .

[10]  R. H. Dodds,et al.  Consistent crystal plasticity kinematics and linearization for the implicit finite element method , 2015 .

[11]  Lars-Erik Lindgren,et al.  Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V , 2013 .

[12]  A. Salem,et al.  Characterization of Microstructure, Texture, and Microtexture in Near-Alpha Titanium Mill Products , 2013, Metallurgical and Materials Transactions A.

[13]  M. Preuss,et al.  The effect of β phase on microstructure and texture evolution during thermomechanical processing of α + β Ti alloy , 2013 .

[14]  A. Pilchak Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth , 2013 .

[15]  Haowen Liu,et al.  Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion , 2012 .

[16]  D. Dimiduk,et al.  A crystal-plasticity FEM study on effects of simplified grain representation and mesh types on mesoscopic plasticity heterogeneities , 2012 .

[17]  P. Bocher,et al.  Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure , 2012 .

[18]  Romain Quey,et al.  Grain orientation fragmentation in hot-deformed aluminium: Experiment and simulation , 2012 .

[19]  H. Yang,et al.  Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution , 2011 .

[20]  H. Christ,et al.  Fatigue of the Near-Alpha Ti-Alloy Ti6242 , 2010 .

[21]  Philippe Bocher,et al.  Texture heterogeneities induced by subtransus processing of near α titanium alloys , 2008 .

[22]  C. Szczepanski,et al.  The Origins of Microtexture in Duplex Ti Alloys (Preprint) , 2008 .

[23]  T. C. Lindley,et al.  Effect of microtexture on fatigue cracking in Ti–6Al–4V , 2007 .

[24]  Babak Farrokh,et al.  Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures , 2007 .

[25]  Somnath Ghosh,et al.  Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242 , 2006 .

[26]  Dierk Raabe,et al.  A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations , 2006 .

[27]  Philippe Bocher,et al.  Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet , 2005 .

[28]  D. Tortorelli,et al.  A polycrystal plasticity model based on the mechanical threshold , 2002 .

[29]  T. Bieler,et al.  The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V , 2002 .

[30]  T. Bieler,et al.  Effect of texture and slip mode on the anisotropy of plastic flow and flow softening during hot working of Ti-6Al-4V , 2001 .

[31]  T. Bieler,et al.  Effect of texture changes on flow softening during hot working of Ti-6Al-4V , 2001 .

[32]  S. Semiatin,et al.  Hot workability of titanium and titanium aluminide alloys—an overview , 1998 .

[33]  H. Davies,et al.  Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature , 1997 .

[34]  J. Jonas,et al.  Stress response and persistence characteristics of the ideal orientations of shear textures , 1989 .

[35]  F. Froes,et al.  Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing , 1986 .

[36]  Jian Liu,et al.  Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: Experiments, modeling and simulation , 2015 .