Topological phonons in Cs-Te binary systems

[1]  Zhenxiang Cheng,et al.  Topological nodal line phonons: Recent advances in materials realization , 2022, Applied Physics Reviews.

[2]  Jie Chen,et al.  Emerging theory and phenomena in thermal conduction: A selective review , 2022, Science China Physics, Mechanics & Astronomy.

[3]  H. Fu,et al.  Topological Phonons in Allotropes of Carbon , 2022, Materials Today Physics.

[4]  C. Cocchi,et al.  Exploring the Cs-Te phase space via high-throughput density-functional theory calculations beyond the generalized-gradient approximation , 2021, The Journal of Chemical Physics.

[5]  Jianzhou Zhao,et al.  Symmetry-enforced nodal chain phonons , 2021, npj Quantum Materials.

[6]  Yugui Yao,et al.  Encyclopedia of emergent particles in three-dimensional crystals. , 2021, Science bulletin.

[7]  Fei Gao,et al.  Topological acoustics. , 2014, Physical review letters.

[8]  P. Zhou,et al.  Ideal topological phononic nodal chain in K2O materials class , 2021, New Journal of Physics.

[9]  Sirshendu Gayen,et al.  Review of recent progress on THz spectroscopy of quantum materials: superconductors, magnetic and topological materials , 2021, The European Physical Journal Special Topics.

[10]  Xing-Qiu Chen,et al.  Topological phononic materials: Computation and data , 2021, Innovation.

[11]  Xueqin Huang,et al.  Higher-order topological semimetal in acoustic crystals , 2021, Nature Materials.

[12]  Qiang Zhu,et al.  Computation and data driven discovery of topological phononic materials , 2020, Nature Communications.

[13]  Shi-Zhang Chen,et al.  Nodal Flexible-surface Semimetals: Case of Carbon Nanotube Networks. , 2020, Nano letters.

[14]  Cheng He,et al.  Acoustic analogues of three-dimensional topological insulators , 2020, Nature Communications.

[15]  Zhengyou Liu,et al.  Experimental demonstration of acoustic semimetal with topologically charged nodal surface , 2020, Science Advances.

[16]  Samit Kumar Gupta,et al.  Topological photonic crystals: a review , 2020, Frontiers of Optoelectronics.

[17]  Yong Xu,et al.  Topological Phononics: From Fundamental Models to Real Materials , 2019, Advanced Functional Materials.

[18]  T. Qian,et al.  Dirac nodal surfaces and nodal lines in ZrSiS , 2019, Science Advances.

[19]  Yong Xu,et al.  Phononic topological insulators with tunable pseudospin physics , 2018, 1809.05721.

[20]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[21]  Wei Guo,et al.  From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide. , 2017, The journal of physical chemistry letters.

[22]  Yong Xu,et al.  Berry Phase and Topological Effects of Phonons , 2017, 1707.07142.

[23]  H. Weng,et al.  d Orbital Topological Insulator and Semimetal in the Antifluorite Cu2S Family: Contrasting Spin Helicities, Nodal Box, and Hybrid Surface States. , 2017, The journal of physical chemistry letters.

[24]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[25]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[26]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[27]  S. Gossé,et al.  Thermodynamic assessment of the Cs–Te binary system , 2015 .

[28]  Bohm-Jung Yang,et al.  Classification of stable three-dimensional Dirac semimetals with nontrivial topology , 2014, Nature Communications.

[29]  K. Maeda,et al.  Behavior of Si impurity in Np-Am-MOX fuel irradiated in the experimental fast reactor Joyo , 2009 .

[30]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[31]  E. Burkel Phonon spectroscopy by inelastic x-ray scattering , 2000 .

[32]  G. Benedek,et al.  Helium atom scattering spectroscopy of surface phonons: genesis and achievements , 1994 .

[33]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[34]  P. Böttcher,et al.  Darstellung und Kristallstruktur von CsTe4 , 1985 .

[35]  E. Cordfunke,et al.  Compounds in the system Cs-Te at room temperature , 1984 .

[36]  Robert G. Parr,et al.  Density Functional Theory , 1983 .

[37]  U. Kretschmann,et al.  Darstellung und Kristallstruktur von Dicaesiumpentatellurid, Cs2Te5† , 1982 .

[38]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[39]  P. Böttcher Synthesis and crystal structure of Rb2Te3 and Cs2Te3 , 1980 .