Effect of temperature of Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 solid-state electrolyte coating process on the performance of LiNi 0.5 Mn 1.5 O 4 cathode materials

[1]  C. Brinker,et al.  Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. , 2015, Journal of the American Chemical Society.

[2]  C. Nan,et al.  Effect of the morphology of Li–La–Zr–O solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials , 2014 .

[3]  B. Yi,et al.  Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal–organic coordination-polymers as precursors , 2014 .

[4]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[5]  C. Nan,et al.  Synthesis and electrochemical performance of rod-like spinel LiMn2O4 coated by Li–Al–Si–O solid electrolyte , 2013 .

[6]  N. Manyala,et al.  Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance. , 2013, ACS applied materials & interfaces.

[7]  Weifeng Zhang,et al.  Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating , 2012 .

[8]  A. Manthiram,et al.  Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries , 2012 .

[9]  A. Kulkarni,et al.  Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic , 2012, Journal of Solid State Electrochemistry.

[10]  Jang-Hoon Park,et al.  A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case , 2012 .

[11]  C. Nan,et al.  Structure and electrochemical performance of single-crystal Li1.05Ni0.1Mn1.9O3.98F0.02 coated by Li-La-Ti-O solid electrolyte , 2012 .

[12]  Eunseok Lee Revealing the coupled cation interactions behind the electrochemicalprofile of LixNi0:5Mn1:5O4 , 2012 .

[13]  Y. Park,et al.  Effects of protecting layer [Li,La]TiO3 on electrochemical properties of LiMn2O4 for lithium batteries , 2011 .

[14]  H. Şahan,et al.  Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries , 2011 .

[15]  G. P. Kalaignan,et al.  Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries , 2010 .

[16]  Cheol-Woo W. Yi,et al.  Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries , 2010 .

[17]  B. Rambabu,et al.  Research progress in high voltage spinel LiNi0.5Mn1.5O4 material , 2010 .

[18]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[19]  Á. Caballero,et al.  Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel: An effective procedure for enhancing its rate capability at room and high temperatures , 2010 .

[20]  R. Dedryvère,et al.  Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery , 2010 .

[21]  Yang-Kook Sun,et al.  Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries , 2010 .

[22]  Yang-Kook Sun,et al.  Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries , 2010 .

[23]  Isobel J. Davidson,et al.  Study of the Cathode–Electrolyte Interface of LiMn1.5Ni0.5O4 Synthesized by a Sol–Gel Method for Li-Ion Batteries , 2010 .

[24]  A. Manthiram,et al.  Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 Before and After Surface Modifications , 2009 .

[25]  Lise Daniel,et al.  High voltage spinel oxides for Li-ion batteries: From the material research to the application , 2009 .

[26]  A. Manthiram,et al.  Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V Limn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-ion Cells , 2009 .

[27]  Huakun Liu,et al.  Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems , 2008 .

[28]  Tatsuji Numata,et al.  Effect of Bi oxide surface treatment on 5 V spinel LiNi0.5Mn1.5−xTixO4 , 2007 .

[29]  Jian-qing Zhang,et al.  Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries , 2007 .

[30]  G. Amatucci,et al.  High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials : Electrochemical impact of electronic conductivity and morphology , 2006 .

[31]  K. Zaghib,et al.  Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry , 2006 .

[32]  Z. Wen,et al.  Lithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1−xTix)1.6(PO4)3 (x=0–1.0) , 2004 .

[33]  C. Yoon,et al.  Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332 , 2004 .

[34]  Y. Idemoto,et al.  Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries , 2003 .

[35]  C. Yoon,et al.  Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures , 2003 .

[36]  M. Yoshio,et al.  In Situ XAFS Analysis of Li(Mn, M)2O4 (M=Cr, Co, Ni) 5V Cathode Materials for Lithium-Ion Secondary Batteries , 2001 .

[37]  Jie Fu Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .

[38]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[39]  Y. Sadaoka,et al.  The Electrical Properties of Ceramic Electrolytes for LiM x Ti2 − x ( PO 4 ) 3 + yLi2 O , M = Ge , Sn , Hf , and Zr Systems , 1993 .

[40]  C. Nan,et al.  Structure and electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 coated with Li-La-Zr-O solid electrolyte , 2013, Journal of Solid State Electrochemistry.

[41]  A. Manthiram,et al.  Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification , 2009 .

[42]  Miho Fujita,et al.  Electrochemical and Structural Properties of a 4.7 V-Class LiNi0.5Mn1.5 O 4 Positive Electrode Material Prepared with a Self-Reaction Method , 2004 .

[43]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .