Nested conformal prediction and quantile out-of-bag ensemble methods

Conformal prediction is a popular tool for distribution-free uncertainty quantification in statistical learning. While the traditional description of conformal prediction starts with a nonconformity score, we provide an alternate (but equivalent) view that starts with a sequence of nested sets and calibrates them to find a valid prediction region. The nested framework easily subsumes all recent score functions including those based on quantile regression and density estimation. While these ideas were originally derived based on sample splitting, our framework seamlessly extends them to leave-one-out techniques like cross-conformal and the jackknife+. We use the framework to derive a new algorithm (QOOB, pronounced cube) that combines four ideas: quantile regression, cross-conformalization, ensemble methods and out-of-bag predictions. In a detailed numerical investigation, QOOB performs either the best or close to the best on all simulated and real datasets.

[1]  E. Candès,et al.  The limits of distribution-free conditional predictive inference , 2019, Information and Inference: A Journal of the IMA.

[2]  G. Shafer,et al.  Algorithmic Learning in a Random World , 2005 .

[3]  V. Vovk,et al.  Combining P-Values Via Averaging , 2012, Biometrika.

[4]  Vladimir Vovk,et al.  Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications , 2014 .

[5]  Harris Papadopoulos,et al.  Inductive Confidence Machines for Regression , 2002, ECML.

[6]  P. Bühlmann,et al.  Analyzing Bagging , 2001 .

[7]  J. Robins,et al.  Distribution-Free Prediction Sets , 2013, Journal of the American Statistical Association.

[8]  Alessandro Rinaldo,et al.  Distribution-Free Predictive Inference for Regression , 2016, Journal of the American Statistical Association.

[9]  Henrik Boström,et al.  Accelerating difficulty estimation for conformal regression forests , 2017, Annals of Mathematics and Artificial Intelligence.

[10]  Henrik Boström,et al.  Regression conformal prediction with random forests , 2014, Machine Learning.

[11]  Emmanuel J. Candès,et al.  A comparison of some conformal quantile regression methods , 2019, Stat.

[12]  Chen Xu,et al.  Predictive inference is free with the jackknife+-after-bootstrap , 2020, NeurIPS.

[13]  Ralph Roskies,et al.  Bridges: a uniquely flexible HPC resource for new communities and data analytics , 2015, XSEDE.

[14]  Victor Chernozhukov,et al.  Distributional conformal prediction , 2019, Proceedings of the National Academy of Sciences.

[15]  Henrik Boström,et al.  Efficient conformal predictor ensembles , 2020, Neurocomputing.

[16]  Lars Carlsson,et al.  Aggregated Conformal Prediction , 2014, AIAI Workshops.

[17]  Rafael Izbicki,et al.  Distribution-free conditional predictive bands using density estimators , 2020, AISTATS.

[18]  Ryan J. Tibshirani,et al.  Predictive inference with the jackknife+ , 2019, The Annals of Statistics.

[19]  Henrik Boström,et al.  On the Calibration of Aggregated Conformal Predictors , 2017, COPA.

[20]  Yaniv Romano,et al.  Conformalized Quantile Regression , 2019, NeurIPS.

[21]  Leying Guan,et al.  Conformal prediction with localization , 2019, 1908.08558.

[22]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[23]  Vladimir Vovk,et al.  Cross-conformal predictors , 2012, Annals of Mathematics and Artificial Intelligence.

[24]  Hannes Leeb,et al.  Adaptive, Distribution-Free Prediction Intervals for Deep Networks , 2020, AISTATS.

[25]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[26]  Hannes Leeb,et al.  Adaptive, Distribution-Free Prediction Intervals for Deep Neural Networks , 2019, ArXiv.