Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels

[1]  D. Morgan,et al.  Machine learning in nuclear materials research Current Opinion in Solid State & Materials Science , 2022 .

[2]  D. Morgan,et al.  Opportunities and Challenges for Machine Learning in Materials Science , 2020, Annual Review of Materials Research.

[3]  Ming Zhao,et al.  Theoretical study of GDM-SA-SVR algorithm on RAFM steel , 2020, Artificial Intelligence Review.

[4]  Ryan Jacobs,et al.  The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research , 2019, Computational Materials Science.

[5]  G. Odette,et al.  On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models , 2019 .

[6]  Dane Morgan,et al.  Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion , 2019, Computational Materials Science.

[7]  D. Morgan,et al.  CuMnNiSi precipitate evolution in irradiated reactor pressure vessel steels: Integrated Cluster Dynamics and experiments , 2019, Acta Materialia.

[8]  D. Morgan,et al.  Exploring effective charge in electromigration using machine learning , 2019, MRS Communications.

[9]  Wei Li,et al.  Predicting the thermodynamic stability of perovskite oxides using machine learning models , 2018, Computational Materials Science.

[10]  M. Fitzpatrick,et al.  Reactor pressure vessel embrittlement: Insights from neural network modelling , 2018 .

[11]  Bryce Meredig,et al.  Robust FCC solute diffusion predictions from ab-initio machine learning methods , 2017, 1705.08798.

[12]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[13]  Wei Chen,et al.  A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds , 2016, Scientific Reports.

[14]  Hiroto Itoh,et al.  Statistical analysis using the Bayesian nonparametric method for irradiation embrittlement of reactor pressure vessels , 2016 .

[15]  P. Wells,et al.  Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels , 2014 .

[16]  G. R. Odette,et al.  A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels , 2013 .

[17]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[18]  Nitin Agarwal,et al.  A data‐driven stochastic collocation approach for uncertainty quantification in MEMS , 2010 .

[19]  Randy K Nanstad,et al.  Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities , 2009 .

[20]  G. E. Lucas,et al.  Embrittlement of nuclear reactor pressure vessels , 2001 .

[21]  Ira R. Weiss,et al.  Issues and opportunities , 1988, DATB.

[22]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .