Polycrystalline iron under compression: Plasticity and phase transitions

[1]  Graeme Ackland,et al.  Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential , 1997 .

[2]  K. Jacobsen,et al.  Nanoscale plasticity , 2002, Nature materials.

[3]  Sidney Yip,et al.  Periodic image effects in dislocation modelling , 2003 .

[4]  P. Entel,et al.  AB INITIO FULL-POTENTIAL STUDY OF THE STRUCTURAL AND MAGNETIC PHASE STABILITY OF IRON , 1999 .

[5]  Brad Lee Holian,et al.  Shock waves in polycrystalline iron. , 2007, Physical review letters.

[6]  M. Meyers,et al.  Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals , 2008 .

[7]  M. Marinica,et al.  Comparison of empirical interatomic potentials for iron applied to radiation damage studies , 2010 .

[8]  M. Meyers,et al.  Analytical and computational description of effect of grain size on yield stress of metals , 2001 .

[9]  Alexander Stukowski,et al.  Extracting dislocations and non-dislocation crystal defects from atomistic simulation data , 2010 .

[10]  Q. Wei,et al.  Tensile properties of nanocrystalline tantalum from molecular dynamics simulations , 2008 .

[11]  T. Germann,et al.  Microscopic View of Structural Phase Transitions Induced by Shock Waves , 2002, Science.

[12]  Robert E. Rudd,et al.  High strain-rate plastic flow in Al and Fe , 2011 .

[13]  D. Farkas,et al.  Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe , 2003 .

[14]  A. Stukowski Structure identification methods for atomistic simulations of crystalline materials , 2012, 1202.5005.

[15]  Cemal Engin,et al.  Characterization of Fe potentials with respect to the stability of the bcc and fcc phase , 2008 .

[16]  V. Levitas High-pressure mechanochemistry: Conceptual multiscale theory and interpretation of experiments , 2003 .

[17]  Börje Johansson,et al.  Quasi-Ab initio molecular dynamic study of Fe melting , 2000, Physical review letters.

[18]  Y. Rong,et al.  Nucleation barrier for phase transformations in nanosized crystals. , 2002 .

[19]  F. Jing,et al.  Magnetism and phase transitions of iron under pressure , 2008 .

[20]  Graeme Ackland,et al.  Development of an interatomic potential for phosphorus impurities in α-iron , 2004 .

[21]  P. Blaha,et al.  Ab initio study of the martensitic bcc-hcp transformation in iron , 1998 .

[22]  G. Ackland,et al.  Metallic-covalent interatomic potential for carbon in iron , 2008 .

[23]  Peter M. Derlet,et al.  Developing realistic grain boundary networks for use in molecular dynamics simulations , 2005 .

[24]  K. Jacobsen,et al.  Simulations of intergranular fracture in nanocrystalline molybdenum , 2004 .

[25]  B. Johansson,et al.  Quenching of bcc-Fe from high to room temperature at high-pressure conditions: a molecular dynamics simulation , 2009 .

[26]  G. Ackland,et al.  Dynamic overshoot in -iron by atomistic simulations , 1998 .

[27]  J. Doll,et al.  Atomistic modeling of thermodynamic equilibrium and polymorphism of iron , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[29]  V. Vítek,et al.  Plastic anisotropy in b.c.c. transition metals , 1998 .

[30]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[31]  M. Ortiz,et al.  Importance of shear in the bcc-to-hcp transformation in iron. , 2004, Physical review letters.

[32]  Bo Sundman,et al.  Modeling of thermodynamic properties for Bcc, Fcc, liquid, and amorphous iron , 2001 .

[33]  J. Shao,et al.  Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Gilbert W. Collins,et al.  Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond x-ray diffraction. , 2005, Physical review letters.

[35]  M. Adams,et al.  Direct Observations of Grain‐Boundary Sliding in Bi‐Crystals of Sodium Chloride and Magnesia , 1962 .

[36]  R. Averback,et al.  Yield strength in nanocrystalline Cu during high strain rate deformation , 2009 .

[37]  R. Averback,et al.  Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding , 2008 .

[38]  J. Boettger,et al.  Metastability and dynamics of the shock-induced phase transition in iron , 1997 .

[39]  J. Ree Grain boundary sliding and development of grain boundary openings in experimentally deformed octachloropropane , 1994 .

[40]  V. Vítek Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding , 2004 .

[41]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[42]  T. Germann,et al.  Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals , 2005 .

[43]  T. Germann,et al.  Uniaxial Hugoniostat: a method for atomistic simulations of shocked materials. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  J. Hashemi,et al.  Effect of shear strain on the α–ε phase transition of iron: a new approach in the rotational diamond anvil cell , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[46]  Graeme Ackland,et al.  Applications of local crystal structure measures in experiment and simulation , 2006 .

[47]  J. Wark,et al.  In situ x-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron , 2011 .

[48]  Paulo S. Branicio,et al.  Structural characterization of deformed crystals by analysis of common atomic neighborhood , 2007, Comput. Phys. Commun..

[49]  Raymond F. Smith,et al.  Ultrahigh Strength in Nanocrystalline Materials Under Shock Loading , 2005, Science.

[50]  V. Vítek,et al.  Atomistic study of non-Schmid effects in the plastic yielding of bcc metals , 2001 .

[51]  D. K. Bowen,et al.  The core structure of ½(111) screw dislocations in b.c.c. crystals , 1970 .

[52]  J. Li,et al.  Dynamical stability of iron under high-temperature and high-pressure conditions , 2012, EPL (Europhysics Letters).

[53]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[54]  Young Won Chang,et al.  Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron , 2011 .

[55]  F. Kroupa Wechselnde Aufspaltung einer Schraubenversetzung in kubisch raumzentrierten Metallen , 1963 .

[56]  P. Erhart,et al.  Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials , 2007 .

[57]  R. Averback,et al.  Limits of hardness at the nanoscale: Molecular dynamics simulations , 2008 .

[58]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[59]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[60]  High-Rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation , 2009, 0902.4491.